Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5)

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics PDF Download

Question 1: Factorize each of the following expression:
16x2 − 25y2
Answer 1:
16x225y2 
=(4x)2(5y)2=(4x5y)(4x+5y)Question 2: Factorize each of the following expression:
27x2 − 12y2
Answer 2: 27x212y2 

=3(9x24y2) 
=3[(3x)2(2y)2] 
=3(3x2y)(3x+2y) 
Question 3: Factorize each of the following expression:
144a2 − 289b2
Answer 3: 144a2289b2 

=(12a)2(17b)2 
=(12a17b)(12a+17b) 
Question 4: Factorize each of the following expression:
12m2 − 27
Answer 4: 12m227 

=3(4m29) 
=3[(2m)232] 
=3(2m3)(2m+3)
Question 5: Factorize each of the following expression:
125x2 − 45y2 
Answer 5: 125x245y2 

=5(25x29y2) 
=5[(5x)2(3y)2] 
=5(5x3y)(5x+3y) 
Question 6: Factorize each of the following expression:
144a2 − 169b2
Answer 6: 144a2169b2 

=(12a)2(13b)2 
=(12a13b)(12a+13b) 
Question 7: Factorize each of the following expression:
(2a − b)2 − 16c2
Answer 7: (2ab)216c2 

=(2ab)2(4c)2 
=[(2ab)4c][(2ab)+4c] 
=(2ab4c)(2ab+4c) 
Question 8: Factorize each of the following expression:
(x + 2y)2 − 4(2x − y)2 
Answer 8: (x+2y)24(2xy)2=(x+2y)2[2(2xy)]2 

=[(x+2y)2(2xy)][(x+2y)+2(2xy)] 
=(x+2y4x+2y)(x+2y+4x2y) 
=5x(4y3x) 
Question 9: Factorize each of the following expression:
3a5 − 48a3
Answer 9:
3a548a3
=3a3(a216)=3a3(a242) =3a3(a4)(a+4)
Question 10: Factorize each of the following expression:
a4 − 16b4 
Answer 10: a416b4=a424b4=(a2)2(22b2)2 

=(a222b2)(a2+22b2) 
=[a2(2b)2](a2+4b2) 
=(a2b)(a+2b)(a2+4b2) 
Question 11: Factorize each of the following expression:
x8 − 1
Answer 11: x81 

=(x4)212 
=(x41)(x4+1) 
=[(x2)212](x4+1) 
=(x21)(x2+1)(x4+1) 
=(x212)(x2+1)(x4+1) 
=(x1)(x+1)(x2+1)(x4+1) 
Question 12: Factorize each of the following expression:
64 − (a + 1)2
Answer 12: 64(a+1)2 

=(8)2(a+1)2 
=[8(a+1)][8+(a+1)] 
=(8a1)(8+a+1) 
=(7a)(9+a) 
Question 13: Factorize each of the following expression:
36l2 − (m + n)2
Answer 13: 36l2(m+n)2 

=(6l)2(m+n)2 
=[6l(m+n)][6l+(m+n)] 
=(6lmn)(6l+m+n) 
Question 14: Factorize each of the following expression:
25x4y4 − 1
Answer 14: 25x4y41 

=(5x2y2)21 
=(5x2y21)(5x2y2+1) 
Question 15: Factorize each of the following expression:
a4 1/b4 
Answer 15:  
a   a- 1/b4 
= (a2)- 1/(b2)2 
= a2- 1/b2a2 + 1/b2 
= a - 1/ba + 1/ba2 + 1/b2 
Question 16: Factorize each of the following expression:
x3 − 144x
Answer 16: x3144x 

=x(x2144) 
=x(x2122) 
=x(x12)(x+12) 
Question 17: Factorize each of the following expression:
(x - 4y)2 − 625
Answer 17: (x4y)2625 

=(x4y)2252 
=[(x4y)25][(x4y)+25] 
=(x4y25)(x4y+25) 
Question 18: Factorize each of the following expression:
9(a − b)2 − 100(x − y)2
Answer 18: 9(ab)2100(xy)2 

=[3(ab)]2[10(xy)]2 
=[3(ab)10(xy)][3(ab)+10(xy)]
=(3a3b10x+10y)(3a3b+10x10y) 
Question 19: Factorize each of the following expression:
(3 + 2a)2 − 25a2
Answer 19: (3+2a)225a2 

=(3+2a)2(5a)2 
=[(3+2a)5a][(3+2a)+5a] 
=(3+2a5a)(3+2a+5a) 
=(33a)(3+7a) 
=3(1a)(3+7a) 
Question 20: Factorize each of the following expression:
(x + y)2 − (a − b)2
Answer 20: (x+y)2(ab)2 

=[(x+y)(ab)][(x+y)+(ab)] 
=(x+ya+b)(x+y+ab) 
Question 21: Factorize each of the following expression:
RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
Answer 21:

 RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
Question 22: Factorize each of the following expression:
75a3b2 - 108ab4
Answer 22: 75a3b2108ab4 

=3ab2(25a236b2) 
=3ab2[(5a)2(6b)2] 
=3ab2(5a6b)(5a+6b) 
Question 23: Factorize each of the following expression:
x5 − 16x3

Answer 23: x516x3
=x3(x216) 
=x3(x242) 
=x3(x4)(x+4) 
Question 24: Factorize each of the following expression:
RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
Answer 24:

 RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics
Question 25: Factorize each of the following expression:
256x5 − 81x
Answer 25: 256x581x 

=x(256x481) 
=x[(16x2)292] 
=x(16x2+9)(16x29) 
=x(16x2+9)[(4x)232] 
=x(16x2+9)(4x+3)(4x3) 
Question 26: Factorize each of the following expression:
a4 − (2b + c)4 
Answer 26: a4(2b+c)4 

=(a2)2[(2b+c)2]2 
=[a2+(2b+c)2][a2(2b+c)2] 
=[a2+(2b+c)2]{[a+(2b+c)][a(2b+c)]} 
=[a2+(2b+c)2](a+2b+c)(a2bc) 
Question 27: Factorize each of the following expression:
(3x + 4y)4x4
Answer 27: (3x+4y)4x4 

=[(3x+4y)2]2(x2)2 
=[(3x+4y)2+x2][(3x+4y)2x2] 
=[(3x+4y)2+x2][(3x+4y)+x][(3x+4y)x] 
={(3x+4y)2+x2}(3x+4y+x)(3x+4yx) 
={(3x+4y)2+x2}(4x+4y)(2x+4y) 
={(3x+4y)2+x2}4(x+y)2(x+2y) 
=8{(3x+4y)2+x2}(x+y)(x+2y) 
Question 28: Factorize each of the following expression:
p2q2p4q4
Answer 28:
p2q2p4q4 
=p2q2(1p2q2) 
=p2q2[1(pq)2] 
=p2q2(1pq)(1+pq) 
Question 29: Factorize each of the following expression:
3x3y − 243xy3
Answer 29: 3x3y243xy3 

=3xy(x281y2) 
=3xy[x2(9y)2]
=3xy(x−9y)(x+9y)
Question 30: Factorize each of the following expression:
a4b4 − 16c4 
Answer 30: a4b416c4 

=[(a2b2)2−(4c2)2]
=(a2b2+4c2)(a2b24c2) 
=(a2b2+4c2)[(ab)2(2c)2] 
=(a2b2+4c2)(ab+2c)(ab2c) 
Question 31: Factorize each of the following expression:
x4 − 625
Answer 31: x4625 

=(x2)2252 
=(x2+25)(x225) 
=(x2+25)(x252) 
=(x2+25)(x+5)(x5)
Question 32: Factorize each of the following expression:
x4 − 1
Answer 32: x41 

=(x2)2−1
=(x2+1)(x2−1)
=(x2+1)(x+1)(x−1)
Question 33: Factorize each of the following expression:
49(a − b)2 − 25(a + b)2
Answer 33: 49(ab)225(a+b)2 

=[7(ab)]2[5(a+b)]2 
=[7(ab)5(a+b)][7(ab)+5(a+b)] 
=(7a7b5a5b)(7a7b+5a+5b) 
=(2a12b)(12a2b) 
=2(a6b)2(6ab) 
=4(a6b)(6ab) 
Question 34: Factorize each of the following expression:
x − yx2 + y2
Answer 34: xyx2+y2 

=(xy)+(y2x2)               [Regrouping the terms] 
=(xy)+(y+x)(yx) 
=(xy)(y+x)(xy)        [(yx)=(xy)] 
=(xy)[1(y+x)] 
=(xy)(1xy) 
Question 35: Factorize each of the following expression:
16(2x − 1)2 − 25y2
Answer 35: 16(2x1)225y2 

=[4(2x1)]2(5y)2 
=[4(2x1)5y][4(2x1)+5y] 
=(8x45y)(8x4+5y) 
=(8x5y4)(8x+5y4) 

Question 36: Factorize each of the following expression:
4(xy + 1)2 − 9(x − 1)2
Answer 36: 4(xy+1)29(x1)2 

=[2(xy+1)]2[3(x1)]2 
=[2(xy+1)3(x1)][2(xy+1)+3(x1)] 
=(2xy+23x+3)(2xy+2+3x3) 
=(2xy3x+5)(2xy+3x1) 
Question 37: Factorize each of the following expression:
(2x + 1)2 − 9x4
Answer 37: (2x+1)29x4 

=(2x+1)2(3x2)2 
=[(2x+1)3x2][(2x+1)+3x2] 
=(3x2+2x+1)(3x2+2x+1) 
We can factorise the quadratic expressions in the curved brackets as: (3x2+3xx+1)(3x2+2x+1)
={3x(x+1)+1(x+1)}(3x2+2x+1) 
=(x+1)(3x+1)(3x2+2x+1) 
=(x1)(3x+1)(3x2+2x+1) 
Question 38: Factorize each of the following expression:
x4 − (2y − 3z)2
Answer 38: x4(2y3z)2 

=(x2)2(2y3z)2 
=[x2(2y3z)][x2+(2y3z)] 
=(x22y+3z)(x2+2y3z)
Question 39: Factorize each of the following expression:
a2b2 + a − b
Answer 39: a2b2+ab=(a2b2)+(ab)            [Grouping the terms] 

=(a+b)(ab)+(ab) 
=(ab)(a+b+1)             [Taking out the common factor (ab)]
Question 40: Factorize each of the following expression:
16a4b4
Answer 40:
16a4b4 
=(4a2)2(b2)2 
=(4a2+b2)(4a2b2) 
=(4a2+b2)[(2a)2b2] 
=(4a2+b2)(2a+b)(2ab)
Question 41: Factorize each of the following expression:
a4 − 16(b − c)4
Answer 41: a416(bc)4 

=(a2)2[4(bc)2]2 
=[a2+4(bc)2][a24(bc)2] 
=[a2+4(bc)2]{a2[2(bc)]2} 
=[a2+4(bc)2][a+2(bc)][a2(bc)] 
=[a2+4(bc)2](a+2b2c)(a2b+2c) 
Question 42: Factorize each of the following expression:
2a5 − 32a
Answer 42: 2a532a 

=2a(a416) 
=2a[(a2)242] 
=2a(a2+4)(a24) 
=2a(a2+4)(a222) 
=2a(a2+4)(a+2)(a2) 
=2a(a2)(a+2)(a2+4) 
Question 43: Factorize each of the following expression:
a4b4 − 81c4
Answer 43: a4b481c4 

=(a2b2)2(9c2)2 
=(a2b2+9c2)(a2b29c2) 
=(a2b2+9c2)[(ab)2(3c)2] 
=(a2b2+9c2)(ab+3c)(ab3c) 
Question 44: Factorize each of the following expression:
xy9yx9
Answer 44: 
xy9yx9 
=xy(y8x8) 
=xy[(y4)2(x4)2] 
=xy(y4+x4)(y4x4)=xy(y4+x4)[(y2)2−(x2)2]
=xy(y4+x4)(y2+x2)(y2x2) 
=xy(y4+x4)(y2+x2)(y+x)(yx) 
Question 45: Factorize each of the following expression:
x3x
Answer 45: x3x 

=x(x21) 
=x(x1)(x+1) 
Question 46: Factorize each of the following expression:
18a2x2 − 32
Answer 46: 18a2x232 

=2(9a2x216) 
=2[(3ax)242] 
=2(3ax4)(3ax+4) 

The document RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs
Related Searches

Extra Questions

,

Objective type Questions

,

ppt

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics

,

Important questions

,

Semester Notes

,

Previous Year Questions with Solutions

,

practice quizzes

,

study material

,

Free

,

mock tests for examination

,

video lectures

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics

,

past year papers

,

MCQs

,

Exam

,

pdf

,

RD Sharma Solutions for Class 8 Math Chapter 7 - Factorization (Part-5) | RD Sharma Solutions for Class 8 Mathematics

,

Viva Questions

,

Summary

,

shortcuts and tricks

,

Sample Paper

;