Class 7 Exam  >  Class 7 Notes  >  Mathematics (Maths) Class 7  >  Chapter Notes: Lines and Angles

Lines and Angles Class 7 Notes Maths Chapter 6

Take a moment to look around the room you're in. What do you notice? Maybe a table, a chair, a wall clock, a laptop, or even a staircase. Now, glance outside—there are trees, roads, buildings, and electric poles. Did you know that all these things are made up of simple shapes like lines and angles?
Lines and Angles Class 7 Notes Maths Chapter 6Let's dive into the world of lines and angles to understand how they form the very objects we see every day.

Real-Life Examples of Lines and Angles

(i) Bamboo Plants: If you observe the bamboo plants, they grow in a straight line. Each bamboo stick resembles a straight line.

(ii) Railway Tracks: When we observe the railway tracks, they run in straight lines extending on both directions.

(iii) Laptop: If we observe, the adjacent sides of the laptop, they form an angle between them.

(iv) Ladder: The two legs of a ladder resemble straight lines. The two legs join at one point and the opening between them is the angle formed by these legs.

Lines and Angles Class 7 Notes Maths Chapter 6

(v) Open Door: What happens when you open a door? As soon as you open the door an angle is formed between the edge of the door and the threshold of the panel.

Door Door 


Some important terms related to lines and angles are: 

  • Point: An exact location that has no size i.e., no length, no width, no depth, the only position is called a point. A point is denoted by a dot (.)
    If you take an ink pen and put a dot on paper using that, then that dot represents a point.
  • Line segment: A collection of points with two fixed endpoints is called a line segment. A line segment AB is denoted byLines and Angles Class 7 Notes Maths Chapter 6 The length of a line segment is fixed.Lines and Angles Class 7 Notes Maths Chapter 6
  • Ray: A part of a line with one fixed point and extends endlessly from the other end is called a ray. Ray AB is denoted byLines and Angles Class 7 Notes Maths Chapter 6 The length of a ray is infinite.
    Ray
    Ray
  • Line: A-Line is a collection of points going endless in both directions along the straight path. Line AB is denoted byLines and Angles Class 7 Notes Maths Chapter 6 The length of a line is infinite.
    Straight Line  
    Straight Line  

Question for Chapter Notes: Lines and Angles
Try yourself:
Which of the following best describes a point?
View Solution

What is an Angle?

When two rays originate from a common point, then the turn between two rays around the common point or vertex is called the angle between the two rays.

Formation of AngleFormation of Angle

  • The two rays joining to form an angle are called arms of an angle and the point at which two rays meet to form an angle is called the vertex of the angle.Lines and Angles Class 7 Notes Maths Chapter 6

In the above figure, two raysLines and Angles Class 7 Notes Maths Chapter 6andLines and Angles Class 7 Notes Maths Chapter 6are the arm of an angle that meet at a common initial point Q (vertex)and form a ∠PQR. The measure of the angle PQR is written as ∠PQR but instead of writing this, we can simply write it as ∠PQR.

Types of Angles

Understanding the different types of angles is crucial in geometry, as they are fundamental to many geometric concepts and real-world applications.
Types of AnglesTypes of Angles

1. Acute Angle

An acute angle is an angle that measures greater than 0° but less than 90°. It is the smallest type of angle, often seen in sharp corners.

  • Example: The angles in a slice of pizza or the hands of a clock at 10:10.

2. Right Angle

A right angle is exactly 90°. It represents a quarter turn and is often associated with perpendicular lines.

  • Example: The corner of a square or rectangle.

3. Obtuse Angle

An obtuse angle is one that measures greater than 90° but less than 180°. These angles appear wider and are more open than acute angles.

  • Example: The angle formed by the hands of a clock at 10:15.

4. Straight Angle

A straight angle is exactly 180°. It forms a straight line, representing a half turn.

  • Example: The angle formed when two people standing back to back extend their arms in opposite directions.

5. Reflex Angle

A reflex angle measures greater than 180° but less than 360°. Reflex angles appear larger and more open than obtuse angles.

  • Example: The angle formed by the hands of a clock at 8:20.

6. Complete Angle

A complete angle is exactly 360°. It represents a full turn or a complete circle.

  • Example: The angle formed by the hands of a clock at 12:00.

1. Complementary Angles

  • When the sum of the measures of two angles is 90°, the angles are called complementary angles.
  • Whenever two angles are complementary, each angle is said to be the complement of the other angle.

Complementary AnglesComplementary Angles

Here,
∠PQS + ∠SQR= 50° + 40° = 90°
In the above figure, we see that the sum of two angles is 90°.

Hence, ∠PQS and ∠SQR are complementary angles. And ∠PQS and ∠SQR are said to be complements of each other.
Example: Are the given angles complementary?
Lines and Angles Class 7 Notes Maths Chapter 6In the given figure,
∠AOB = 70°and ∠POQ = 20°
∠AOB + ∠POQ = 70° + 20° = 90°
Therefore, ∠AOB and ∠POQ are complementary angles.

Question for Chapter Notes: Lines and Angles
Try yourself:What is the sum of the measures of two complementary angles?
View Solution

2. Supplementary Angles

  • Two angles are said to be supplementary if the sum of their measure is equal to 180°.
  • When two angles are supplementary, each angle is said to be the supplement of the other
    Clock 
    Clock 

Example: Clock: The two angles formed by the hands of the above clock are supplementary.

  • The measure of two angles 120° and 60° are given and when we add up that angles we get 180°.
    120° + 60° = 180°.
  • Hence, we can say that they are supplementary angles or supplements of each other.

Supplementary AngleSupplementary Angle

Here,
∠PQS + ∠SQR = 150° + 30° = 180°
In the above figure, we see that the sum of two angles is 180°.

Hence, ∠PQS and ∠SQR are supplementary angles, and ∠PQS and ∠SQR are said to be supplements of each other.

Example: The following ∠AOB and ∠POQ are supplementary angles or not?
Supplementary AngleSupplementary Angle

Sol: In the given figure,
∠AOB + ∠POQ = 130° + 50° = 180°
∠AOB + ∠POQ = 180°
∴ ∠AOB and ∠POQ are supplementary angles. Or
∠AOB and ∠POQ are said to be supplements of each other.

Question for Chapter Notes: Lines and Angles
Try yourself:Which of the following pairs of angles is not a pair of supplementary angles?
View Solution

3. Adjacent Angles

These angles are such that:

(i) they have a common vertex.

(ii) they have a common arm.

(iii) the non-common arms are on either side of the common arm.

Such pairs of angles are called adjacent angles. 

Note: Adjacent angles have a common vertex and a common arm but no common interior points.

Example: In the following figure angles marked with 1 and 2 are they adjacent? If not give a reason for that.
Adjacent AngleAdjacent Angle

Solution:

In figure number (i)
(i) We see ∠PQS and ∠SQR have a common arm QS.
They have a common vertex Q.
They do not have a common interior point.
Hence, ∠PQS and ∠SQR are adjacent angles

In figure number (ii)
(ii) We see ∠RQS and ∠SQP have a common arm QS.
They have a common vertex Q.
They do not have a common interior point
Hence, ∠RQS and ∠SQP are adjacent angles

In figure number (iii)
(iii) We see ∠PTS and ∠SQR have a common arm QS.
They do not have a common vertex.
They do not have a common interior point.
The above figure does not satisfy all the conditions for being adjacent angles.
Hence, ∠PTS and ∠SQR are not adjacent angles.

Pairs of Lines

1. Intersecting Lines

Two lines are said to be intersecting when they cross each other at one point only and the point at which they intersect is called the point of intersection.

Lines and Angles Class 7 Notes Maths Chapter 6Here, two lines l and m intersect each other at point O, and point O is called the point of intersection.

2. Transversal Line

A line that intersects two or more lines in a plane at distinct points is called a transversal line.

Lines and Angles Class 7 Notes Maths Chapter 6

  • Here, line mn intersects two lines AB and CD at two distinct points O and P respectively. 
  • Hence, line mn is called the transversal line and points O and P are called the points of intersection.

3. Angles made by a Transversal

Lines and Angles Class 7 Notes Maths Chapter 6

Here, the two lines l and m are intersected by a transversal n at points O and P respectively. We see that four angles are formed at each point O and P, namely ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7, and ∠8.

Lines and Angles Class 7 Notes Maths Chapter 6Lines and Angles Class 7 Notes Maths Chapter 6

Example: In the figure given below, l || m and ∠1 = 53°. Find ∠6 and ∠7.

Lines and Angles Class 7 Notes Maths Chapter 6

We have,
∠1 = ∠3 [Vertically opposite angles]
∠3 = ∠7 [Corresponding angles]
∴ ∠1 = ∠7
→ ∠7 = 53° ∵ ∠1 = 53° (Given)
∠6 + ∠7 = 180° [Linear pair]
∠6 + 53° = 180°
∠6 + 53° − 53° = 180° − 53°
∠6 = 127°
Thus, ∠6 = 127° and ∠7 = 53°

Question for Chapter Notes: Lines and Angles
Try yourself:A-line that intersects two or more lines at distinct points is called
View Solution

4. Transversal of Parallel Lines

If two lines lying in the same plane do not intersect when produced on either side, then such lines are said to be parallel to each other.

Lines and Angles Class 7 Notes Maths Chapter 6

Here, lines l and m are parallel to each other, and transversal n intersects line l and m at point O and P respectively.

Lines and Angles Class 7 Notes Maths Chapter 6

When the two parallel lines l and m are cut by a transversal n, then obtained the following relations:
(i) When a transversal intersects two parallel lines, then each pair of alternate interior angles are equal.
When line n intersects two parallel lines l and m, then we see that each pair of alternate interior angles is equal.
∴ ∠ 3 = ∠5, ∠4 = ∠6

(ii) When a transversal intersects two parallel lines, each pair of alternate exterior angles are equal.

When line n intersects two parallel lines l and m, then we see that each pair of alternate exterior angles is equal.
∴ ∠ 2 = ∠8, ∠1 = ∠7

(iii) When a transversal intersects two parallel lines, each pair of corresponding angles are equal.
When line n intersects two parallel lines l and m, then we see that each pair of corresponding angles is equal.
∴ ∠3 = ∠7, ∠2 = ∠6, ∠ 1 = ∠5, and ∠4 = ∠8

(iv) When a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal are supplementary
When line n intersects two parallel lines l and m, then we see that each pair of interior angles on the same side of the transversal are supplementary.
In the above figure, ∠ 3 = ∠4 .....Linear pair of angles
We know sum of the linear pair of angles is 180° ∴ ∠ 3 + ∠4 = 180°
But, ∠4 = ∠6 ...Pair of alternate interior angles Therefore, we can say that ∴ ∠ 3 + ∠6 = 180°
Similarly, ∠4 + ∠5 = 180°

Example: In the given figure l || m, ∠1 = 55°. Find ∠5, ∠6, and ∠7.

Lines and Angles Class 7 Notes Maths Chapter 6

We have,
∠ 1 = ∠5 .....Corresponding angles
∴ ∠ 5 = 55° [∵ ∠1 = 55°]
∠5 = ∠7 .....Vertically opposite angles
∴ ∠7 = 55° [∵ ∠5 = 55°]
Now,
∠ 6 + ∠7 = 180°.....Linear pair of angles
∠ 6 + 55° = 180°
∠ 6 + 55° − 55° = 180° − 55°
∠ 6 = 180° − 55°
∠ 6 = 125°
Thus, ∠ 5 = 55°, ∠ 6 = 125°and ∠7 = 55°

Question for Chapter Notes: Lines and Angles
Try yourself:Which of the following is true for parallel lines?
View Solution

Checking for Parallel Lines

Some special pairs of angles can be used to test if the lines are parallel or not.

(i) When a transversal intersects two parallel lines, such that if any pair of corresponding angles are equal, then the lines are parallel.

Lines and Angles Class 7 Notes Maths Chapter 6 

In the given figure, transversal n intersects two lines l and m in such a way that,
∠3 = ∠7, ∠2 = ∠6, ∠ 1 = ∠5, and ∠4 = ∠8 ...(Pairs of corresponding angles are equal)
Hence, we can say that lines are parallel.

(ii) When a transversal intersects two parallel lines, such that if any pair of alternate interior angles are equal, the lines have to be parallel.

Lines and Angles Class 7 Notes Maths Chapter 6

In the given figure, transversal n intersects two lines l and m in such a way that,
∠ 3 = ∠5, ∠4 = ∠6 ... (Alternate interior angles are equal)

Hence, we can say that lines are parallel.

(iii) When transversal intersects two parallel lines, such that if any pair of alternate exterior angles are equal, the lines have to be parallel.

Lines and Angles Class 7 Notes Maths Chapter 6

In the given figure, transversal n intersects two lines l and m in such a way that,
∠1 = ∠7, ∠2 = ∠8 ... (Alternate exterior angles are equal)

Hence, we can say that lines are parallel.

(v) When transversal intersects two parallel lines, such that if any pair of interior angles on the same side of the transversal are supplementary, the lines have to be parallel.

Lines and Angles Class 7 Notes Maths Chapter 6

In the given figure, transversal n intersects two lines l and m in such a way that, ∠ 3, ∠6 and ∠4, ∠5 ...Pairs of co-interior angles or angles on the same sides of the transversal
Hence,
∠ 3 + ∠6 = 180° and
∠4 + ∠5 = 180°
Hence, we can say that lines are parallel.

Example: Find whether AB || CD.

Lines and Angles Class 7 Notes Maths Chapter 6

In the given figure,
∠CPN = ∠OPD = 65°...Vertically opposite angles
∠BOP + ∠OPD = 180°
Thus, the sum of co-interior angle is 180°
Hence,
135° + ∠OPD = 180°
∠OPD = 180° − 135°
∠OPD = 45°
Therefore, AB || CD

Question for Chapter Notes: Lines and Angles
Try yourself:In the following figure, a transversal cuts two parallel lines l and m respectively and the angles thus formed are marked. If ∠1 is an acute angle, then, which of the following statements is false? 

Lines and Angles Class 7 Notes Maths Chapter 6

View Solution


Hope you have understood the topic well. Understand in detail the entire chapter through this video:

The document Lines and Angles Class 7 Notes Maths Chapter 6 is a part of the Class 7 Course Mathematics (Maths) Class 7.
All you need of Class 7 at this link: Class 7
76 videos|345 docs|39 tests

Top Courses for Class 7

FAQs on Lines and Angles Class 7 Notes Maths Chapter 6

1. What is the definition of an angle in geometry?
Ans. An angle is formed when two rays originate from a common endpoint, called the vertex.
2. What are related angles in geometry?
Ans. Related angles are angles that have a specific relationship with each other, such as complementary angles, supplementary angles, and vertical angles.
3. What are pairs of lines in geometry?
Ans. Pairs of lines in geometry include parallel lines, perpendicular lines, and intersecting lines.
4. How can you determine if two lines are parallel?
Ans. Two lines are parallel if they never intersect and have the same slope.
5. What are some ways to check if two lines are parallel to each other?
Ans. Some ways to check if two lines are parallel include comparing their slopes or using the alternate interior angles theorem.
76 videos|345 docs|39 tests
Download as PDF
Explore Courses for Class 7 exam

Top Courses for Class 7

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Lines and Angles Class 7 Notes Maths Chapter 6

,

Summary

,

Free

,

Lines and Angles Class 7 Notes Maths Chapter 6

,

video lectures

,

Previous Year Questions with Solutions

,

practice quizzes

,

Objective type Questions

,

study material

,

Extra Questions

,

past year papers

,

Sample Paper

,

Lines and Angles Class 7 Notes Maths Chapter 6

,

Exam

,

pdf

,

Important questions

,

Semester Notes

,

shortcuts and tricks

,

mock tests for examination

,

Viva Questions

,

ppt

,

MCQs

;