Class 8 Exam  >  Class 8 Notes  >  RD Sharma Solutions for Class 8 Mathematics  >  RD Sharma Solutions - Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths

Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics PDF Download

PAGE NO 20.28:

Question 1:

Find the area of the pentagon shown in fig. 20.48, if AD  = 10 cm, AG  = 8 cm, AH  = 6 cm, AF  = 5 cm, BF  = 5 cm, CG  = 7 cm and EH  = 3 cm.
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

ANSWER:

The given figure is:  
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Given:AD  =  10 cm, AG  =  8 cm, AH  =  6 cm, AF  =  5 cmBF  =  5 cm, CG  =  7 cm, EH  =  3 cm

∴ FG  =  AG - AF  =  8 - 5  =  3 cm 

And, GD  =  AD - AG  =  10 - 8  =  2 cm

From given figure:Area of Pantagon  =  (Area of triangle AFB)  +  (Area of trapezium FBCG)  +  (Area of triangle CGD)  +  (Area of triangle ADE)

=  (1/2  ×  AF  ×  BF)  +  [1/2  ×  (BF  +  CG)  ×  (FG)]  +  (1/2  ×  GD  ×  CG)  +  (1/2  ×  AD  ×  EH)

=  (1/2  ×  5  ×  5)  +  [1/2  ×  (5  +  7)  ×  (3)]  +  (1/2  ×  2  ×  7)  +  (1/2  ×  10  ×  3)

=  (25/2)  +  [36/2]  +  (14/2)  +  (30/2)

= 12.5  +  18  +  7  +  15

= 52.5 cm² 


Question 2:

Find the area enclosed by each of the following figures [Fig. 20.49 (i)-(iii)] as the sum of the areas of a rectangle and a trapezium:
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

ANSWER:

Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics
(i)The given figure can be divided into a rectangle and a trapezium as shown below:  
From the above firgure:

Area of the complete figure  =  (Area of square ABCF) + (Area of trapezium CDEF)

= (AB × BC) + [1/2 × (FC + ED) × (Distance between FC and ED)]

= (18 × 18) + [1/2 × (18 + 7) × (8)]

= 324 + 100

= 424 cm²

(ii)The given figure can be divided in the following manner:  

From the above figure:

AB  =  AC-BC = 28-20 = 8 cm

So that area of the complete figure  =  (area of rectangle BCDE) + (area of trapezium ABEF)

= (BC × CD) + [1/2 × (BE + AF) × (AB)]

= (20 × 15) + [1/2 × (15 + 6) × (8)]

= 300 + 84

= 384 cm²

(iii)The given figure can be divided in the following manner:
From the above figure:

EF  =  AB  =  6 cm

Now, using the Pythagoras theorem in the right angle triangle CDE:

52  =  42 + CE2

CE2  =  25-16 = 9

CE  =  √9  =  3 cm

And, GD = GH + HC + CD

= 4 + 6 + 4 = 14 cm

∴ Area of the complete figure = (Area of rectangle ABCH) + (Area of trapezium GDEF)

= (AB × BC) + [1/2 × (GD + EF) × (CE)]

= (6 × 4) + [1/2 × (14 + 6) × (3)]

= 24 + 30 = 54 cm² 


Question 3:

There is a pentagonal shaped park as shown in Fig. 20.50. Jyoti and Kavita divided it in two different ways.

Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics
 Find the area of this park using both ways. Can you suggest some another way of finding its areas?

ANSWER:

A pentagonal park is given below:  

Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 MathematicsChapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

Jyoti and Kavita divided it in two different ways. 

 (i) Jyoti divided is into two trapeziums as shown below: 

Jyoti and Kavita divided it in two different ways. 

It is clear that the park is divided in two equal trapeziums whose parallel sides are 30 m and 15 m. 

And, the distance between the two parallel lines: 15/2 = 7.5 m

∴ Area of the park = 2 × (Area of a trapazium)

= 2 × [1/2 × (30 + 15) × (7.5)] = 337.5 m²

(ii)Kavita divided the park into a rectangle and a triangle, as shown in the figure.  

Here, the height of the triangle  =  30-15 = 15 m

∴ Area of the park = (Area of square with sides 15 cm) + (Area of triangle with base 15 m and altitude 15 m)

= (15 × 15) + (1/2 × 15 × 15)

= 225 + 112.5

= 337.5 m²

 

PAGE NO 20.29:

Question 4:

Find the area of the following polygon, if AL  = 10 cm, AM  = 20 cm, AN  = 50 cm, AO  = 60 cm and AD  = 90 cm.
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

ANSWER:

The given polygon is:  The given polygon is:  
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics
Given: AL = 10 cm, AM = 20 cm, AN = 50 cm

AO = 60 cm, AD = 90 cm

Hence, we have the following: MO = AO-AM = 60-20 = 40 cm

OD = AD-AO = 90-60 = 30 cm

ND = AD-AN = 90-50 = 40 cm

LN = AN-AL = 50-10

= 40 cm

From given figure:

Area of Polygon = (Area of triangle AMF) + (Area of trapezium MOEF) + (Area of triangle EOD) + (Area of triangle DNC) + (Area of trapezium NLBC) + (Area of triangle ALB)

=(1/2 × AM × MF) + [1/2 × (MF + OE) × (OM)] + (1/2 × OD × OE) + (1/2 × DN × NC) + [1/2 × (LB + NC) × (NL)] + (1/2 × AL × LB)

= (1/2 × 20 × 20) + [1/2 × (20 + 60) × (40)] + (1/2 × 30 × 60) + (1/2 × 40 × 40) + [1/2 × (30 + 40) × (40)] + (1/2 × 10 × 30)

= 200 + 1600 + 900 + 800 + 1400 + 150

= 5050 cm2


Question 5:

Find the area of the following regular hexagon.
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

ANSWER:

The given figure is: The given figure is:
Join QN.
Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics
It is given that the hexagon is regular. 

So, all its sides must be equal to 13 cm.

Also, AN  =  BQ

QB + BA + AN  =  QN

AN + 13 + AN  =  23 

2AN  =  23-13 

=  10AN  =  10/2  =  5 cm

Hence, AN  =  BQ  =  5 cm

Now, in the right angle triangle MAN:

MN² = AN² + AM²

132 = 52 + AM²

Am² = 169-25 = 144

AM =Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics = 12cm

∴ OM  =  RP  =  2 × AM  =  2 × 12  =  24 cm

Hence, area of the regular hexagon  =  (area of triangle MON) + (area of rectangle MOPR) + (area of triangle RPQ)

= (1/2 × OM × AN) + (RP × PO) + (1/2 × RP × BQ)

= (1/2 × 24 × 5) + (24 × 13) + (1/2 × 24 × 5)

= 60 + 312 + 60

= 432 cm² 

The document Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics is a part of the Class 8 Course RD Sharma Solutions for Class 8 Mathematics.
All you need of Class 8 at this link: Class 8
88 docs

FAQs on Chapter 20 - Mensuration - I (Part - 3), Class 8, Maths RD Sharma Solutions - RD Sharma Solutions for Class 8 Mathematics

1. What is Mensuration?
Ans. Mensuration is a branch of mathematics that deals with the measurement of geometric figures and their parameters such as length, area, volume, and surface area.
2. How is mensuration useful in real life?
Ans. Mensuration is used in various real-life scenarios such as designing buildings, calculating land area, determining the quantity of materials needed for construction, measuring the volume of containers, and planning irrigation systems.
3. What are the different formulas used in mensuration?
Ans. Some common formulas used in mensuration are: - For a rectangle: Area = length × width, Perimeter = 2(length + width) - For a circle: Area = πr², Circumference = 2πr - For a triangle: Area = ½(base × height), Perimeter = sum of all three sides - For a cube: Volume = side³, Surface Area = 6(side²)
4. How can I calculate the volume of irregular shapes?
Ans. To calculate the volume of irregular shapes, you can use the method of approximation. Break down the irregular shape into smaller regular shapes, such as cubes or rectangular prisms, and calculate the volume of each regular shape. Then, sum up the volumes of all the regular shapes to get an approximate volume of the irregular shape.
5. Can you give an example of how mensuration is used in construction?
Ans. Yes, mensuration is extensively used in construction. For example, when building a house, mensuration is used to calculate the required amount of building materials like bricks, cement, and paint. It is also used to determine the area of each room, the length of pipes needed for plumbing, and the amount of flooring material required. By using mensuration, construction professionals can estimate costs accurately and plan the project effectively.
Related Searches

past year papers

,

MCQs

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

Chapter 20 - Mensuration - I (Part - 3)

,

Important questions

,

ppt

,

Summary

,

Free

,

Exam

,

Objective type Questions

,

pdf

,

study material

,

Viva Questions

,

shortcuts and tricks

,

Class 8

,

mock tests for examination

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

Chapter 20 - Mensuration - I (Part - 3)

,

practice quizzes

,

Sample Paper

,

Class 8

,

Class 8

,

Chapter 20 - Mensuration - I (Part - 3)

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 8 Mathematics

,

Previous Year Questions with Solutions

,

video lectures

,

Semester Notes

,

Extra Questions

;