Q1. Find the value of:
√32 + √48√8 + √12
Solution: Since,
√32 = √16 × 2 = 4√2 ; √48 = √16 × 3 = 4√3
Similarly, √8 = √4 × 2 = 2√2 and √12 = √4 × 3 = 2√3
Therefore, 4√2 + 4√32√2 + 2√3 = 4(√2 + √3)2(√2 + √3) = 2
Q2. If √2 = 1.4142, then find the value of:
√ √2 − 1√2 + 1
Solution:
Rationalising the denominator of: √ √2 − 1√2 + 1
√2 − 1√2 + 1 × √2 − 1√2 − 1 = (√2 − 1)2(√2)2 − (1)2
= (√2 − 1)22 − 1 = (√2 − 1)2
⇒ √2 − 1√2 + 1 = √2 − 1
Substitute √2 = 1.4142:
1.4142 − 1 = 0.4142
Q3. Find the value of 'a' in:
3 − √53 + 2√5 = a√5 − 1911
Solution:
L.H.S: 3 − √53 + 2√5 × 3 − 2√53 − 2√5 (Rationalising the denominator)
= 9 − 6√5 − 3√5 + 10(3)2 − (2√5)2 (Using (a + b)(a − b) = a2 − b2)
= 19 − 9√59 − 20 = 19 − 9√5−11 = 9√5 − 1911
So, L.H.S = R.H.S
i.e. 911 √5 − 1911 = a√5 − 1911
⇒ a = 911
Q4. Find the value of 'a' and 'b':
7 + √57 − √5 − 7 − √57 + √5 = a + 711 √5 b
Solution:
L.H.S: 7 + √57 − √5 − 7 − √57 + √5
= (7 + √5)2 − (7 − √5)2(7 − √5)(7 + √5) = 49 + 5 + 14√5 − 49 − 5 + 14√549 − 5
= 4 × 7√544 = 7√511
So, L.H.S = R.H.S
R.H.S = a + 711 √5 b
Since, L.H.S = R.H.S
∴ 0 + 711 √5 = a + 711 √5 b
⇒ a = 0, b = 1
Solution:
a = 3 + √52 ⇒ 1a = 23 + √5
Now, a² + 1/a² = (a + 1/a)² − 2
⇒ a² + 1/a² = (3 + √5)/2 + 2/(3 + √5)1 − 2
= [(3 + √5)² + 2²]2(3 + √5) − 2
= 9 + 5 + 2 × 3 × √5 + 42 × 3 + 2 × √5 − 2
= 18 + 6√56 + 2√5 − 2
= (6(3 + √5))²(2(3 + √5))² − 2
= (6/2)²9 − 2
= 3² − 2 = 7
So, a² + 1a² = 7.
44 videos|412 docs|54 tests
|
1. What is the number system? |
2. What are natural numbers? |
3. What are rational numbers? |
4. What are irrational numbers? |
5. What is the difference between whole numbers and integers? |