Class 8 Exam  >  Class 8 Notes  >  NCERT Solutions(Part- 2)- Factorisation

NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation

EXERCISE 14.2
Question 1. Factorise the following expressions.
(i) a2 + 8a + 16
(ii) P2 – 10p + 25
(iii) 25m2 + 30 m + 9
(iv) 49y2 + 84yz + 36z2
(v) 4x2 – 8x + 4
(vi) 121b2 – 88bc + 16c2
(vii) (l + m)2 – 4lm
(viii) a4 + 2a2b2 + b4
[Hint: Expand (l + m)2 first.]

Solution:
 (i) 
We have   a2 + 8a + 16 = (a)2 + 2(a)(4) + (4)2
                                          = (a + 4)2 = (a + 4)(a + 4)
∴                   a2 + 8a + 16 = (a + 4)2 = (a + 4)(a + 4)

(ii) We have p2 – 10p + 25 = P2 – 2(p)(5) + (5)2
                                           = (p – 5)2 = (p – 5)(p – 5)
∴                  P2 – 10p + 25 = (p – 5)2 = (p – 5)(p – 5)

(iii) We have     25m2 + 30m + 9 = (5m)2 + 2(5m)(3) + (3)2
                                                    = (5m + 3)2 = (5m + 3)(5m + 3)
∴                       25m+ 30m + 9 = (5m + 3)2 = (5m + 3)(5m + 3)

(iv) We have 49y2 + 84yz + 36z = (7y)2 + 2(7y)(6z) + (6z)2
                                                   = (7y + 6z)2
                                                              = (7y + 6z)(7y + 6z)
 ∴                   
49y2 + 84yx + 36 z2 = (7y + 6z)2 = (7y + 6z)(7y + 6z)

(v) We have 4x– 8x + 4 = (2x)2 – 2(2x)(2) + (2)2
                                        = (2x – 2)2 = (2x – 2)(2x – 2)
                                        = 2(x – 1)2(x – 1)
                                        = 4(x – 1)(x – 1)
∴                 4x– 8x + 4 = 4(x – 1)(x – 1) = (4(x – 1)2

(vi) We have 121b2 – 88bc + 16c= (11b)2 – 2(11b)(4c) + (4c)2
                                                       = (11b – 4c)2 = (11b – 4c)(11b – 4c)
∴                  121b2 – 88bc + 16c2 = (11b – 4c)2 = (11b – 4c)(11b – 4c)

(vii) We have   (l + m)2 – 4lm = (l2 + 2lm + m2) – 4lm
                                              [Collecting the like terms 2lm and –4lm]
                                             = l2 + (2lm – 4lm) + m2
                                             = l2 + 2lm + m2
                                             = (l)2 – 2(l)(m) + (m)2
                                            = (l – m)2 = (l – m)(l – m)
∴                  (l + m)2 – 4lm = (l – m)2 = (l – m)(l – m)

(viii) We have a4 + 2a2b2 + b4 = (a2)2 + 2(a2)(b2) + (b2)2
                                                = (a2 + b2)2 = (a+ b2)(a2 + b2)
∴                   a4 + 2a2b2 + b2 = (a2 + b2)2 = (a2 + b2)(a2 + b2)


Question 2. Factorise:
(i) 4p2 – 9q2
(ii) 63a2 – 112b2
(iii) 49x2 – 36
(iv) 16x5 – 144x3
(v) (l + m)– (l – m)2
(vi) 9x2y2 – 16
(vii) (x2 – 2xy + y2) – z2
(viii) 25a2 – 4b2 + 28bc – 49c2

Solution:
 (i)
∵ 4p2 – 9q2 = (2p)2 – (3q)2
                       = (2p – 3q)(2p + 3q)        [Using a– b2 = (a + b)(a – b)]
∴    4p– 9q2 = (2p – 3q)(2p + 3q)

(ii) We have
       63a2 – 112b2 = 7 * 9a2 – 7 * 16b2
                            = 7[9a2 – 16b2)
∵       9a2 – 16b2 = (3a)2 – (4b)2
                           = (3a + 4b)(3a – 4b)          [Using a2 – b2 = (a + b)(a – b)]
∴ 63a– 112b2 = 7[(3a + 4b)(3a – 4b)]


(iii) ∵  49 x2 – 36 = (7x)2 – (6)2
                           = (7x – 6)(7x + 6)              [Using a2 – b2 = (a – b)(a + b)]
∴        49x2 – 36 = (7x – 6)(7x + 6)

(iv) We have 16x= 16x3 * x2 and 144x3 = 16x3 * 9
∴     16x5 – 144x3 = (16x3) * x2 – (16x3) * 9
                             = 16x3[x2 – 9]
                             = 16x3[(x)2 – (3)2]
                             = 16x3[(x + 3)(x – 3)]          [(Using a2 – b2 = (a – b)(a + b)]
∴     16x5 – 144x3 = 16x3(x + 3)(x – 3)

(v) Using the identitiy a2 – b2 = (a + b)(a – b), we have
                  (l + m)2 – (l – m)2 = [(l + m) + (l – m)][(l + m) – (l – m)]
                                               = [l + m + l – m][l + m – l + m]
                                               = (2l)(2m) = 2 * 2(l * m)
                                               = 4lm

(vi) We have    9x2y2 – 16 = (3xy)2 – (4)2
                                          = (3xy + 4)(3xy – 4)        [Using a2 – b2 = (a + b)(a – b)]
∴                      9x2y2 – 16 = (3xy + 4)(3xy – 4)

(vii) We have x2 – 2xy + y2= (x – y)2
∴         (x2 – 2xy + y2) – z2 = (x – y)2 – (z)2
                                          = [(x – y) + z][(x – y) – z]
                                                 [Using a– b2 = (a + b)(a – b)]
                                          = (x – y + z)(x – y – z)
∴       (x2 – 2xy + y2) – z2 = (x – y + z)(x – y – z)

(viii) We have       –4b2 + 28bc – 49c2 = (–1)[4b2 – 28bc + 49c2]
                                                             = –1[(2b)– 2(2b)(7c) + (7c)2]
                                                             = –[2b – 7c]2
∴                25a2 – 4b2 + 28bc – 49c2  = 25a2 – (2b – 7c)2
Now, using                              a2 – b2 = (a + b)(a – b), we have
                                [5a]2 – [2b – 7c]2 = (5a + 2b – 7c)(5a – 2b + 7c)
∴               25a2 – 4a2 + 28bc – 49c2 = (5a + 2b – 7c)(5a – 2b + 7c)


Question 3. Factorise the expressions.
(i) ax2 + bx
(ii) 7p2 + 21q2
(iii) 2x3 + 2xy2 + 2xz2
(iv) am2 + bm2 + bn2 + an2
(v) (lm + l) + m + 1
(vi) y(y + z) + 9(y + z)
(vii) 5y2 – 20y – 8z + 2yz
(viii) 10ab + 4a + 5b + 2
(ix) 6xy – 4y + 6 – 9x

Solution:
(i) ∵       ax2 = a * x * x = (x)[ax]
               bx = b * x = (x)[b]
∴   ax2 + bx = x[ax + b]

(ii) We have 7p2 + 21q2 = 7 * p * p + 7 * 3 * q * q
= 7[p * p + 3 * q * q]
= 7[p2 + 3q2]

(iii) Taking out 2x as common from each term, we have
      2x+ 2xy+ 2xz= 2x[x2 + y2 + z2]

(iv) We can take out m2 as common from the first two terms and n2 as common from the last two terms,
∴ am2 + bm2 + bn2 + an2 = m2(a + b) + n2(b + a)
                                         = m2(a + b) + n2(a + b)
                                         = (a + b)[m2 + n2]

(v) We have     lm + l = l(m + 1)
∴    (lm + l) + (m + 1) = l(m + 1) + (m + 1)
                                  = (m + 1)[l + 1]

(vi) We have (y + z) as a common factor to both terms.
∴     y(y + z) + 9(y + z) = (y + z)(y + 9)

(vii) We have 5y2 – 20y = 5y(y – 4)
and                –8z + 2yz = 2z(–4 + y)
                                      = 2z(y – 4)
∴ 5y2 – 20y – 8z + 2yz = 5y(y – 4) + 2z(y – 4)
                                     = (y – 4)[5y + 2z]

(viii) We have,    10ab + 4a = 2a(5b + 2)
and                         (5b + 2) = 1(5b + 2)
∴           10ab + 4a + 5b + 2 = 2a(5b + 2) + 1(5b + 2)
                                            = (5b + 2)[2a + 1]

(ix) Regrouping the terms, we have
6xy – 4y + 6 – 9x = 6xy – 4y – 9x + 6
                            = 2y[3x – 2] – 3[3x – 2]
                            = (3x – 2)[2y – 3]

Question 4. Factorise:
(i) a4 – b4
(ii) p4 – 81
(iii) x4 – (y + z)4
(iv) x4 – (x – z)4
(v) a4 – 2a2b2 + b4

Solution: 
(i) Using a2 – b2 = (a – b)(a + b), we have
              a4 – b4 = (a2)2 – (b2)2
                          = (a2 + b2)(a2 – b2)
                          = (a2 + b2)[(a + b)(a – b)]
                          = (a2 + b2)(a + b)(a – b)

(ii) We have    P4 – 81 = (p2)2 – (92)2
Now using      a2 – b2 = (a + b)(a – b), we have
                (p2)– (9)2 = (p2 + 9)(p2 – 9)
We can factorise p2 – 9 further as
                       p2 – 9 = (p)– (3)2
                                 = (p + 3)(p – 3)
∴                  p4 – 81 = (p + 3)(p – 3)(p2 + 9)

(iii)  ∵ x4 – (y + z)4 = [x2]2 – [(y + z)2]2
                              = [(x)2 + (y + z)2][(x2) – (y + z)2]
                                                                 [Using a2 – b2 = (a + b)(a – b)]
We can factorise [x2 – (y + z)2] further as
       (x)2 – (y + z)2 = [(x) + (y + z)][(x) – (y + z)]
                             = (x + y + z)(x – y – z)
∴       x4 – (y + z)4 = (x + y + z)(x – y – z)[x2 + (y + z)2]

(iv) We have x4 – (x – z)4 = [x2]2 – [(x – z)2]2
                                        = [x2 + (x – z)2][x2 – (x – z)2]
Now, factorising x2 – (x – z)2 further, we have
                   x2 – (x – z)2 = [x + (x – z)][x – (x – z)]
                                       = (x + x – z)(x – x + z) = (2x – z)(z)
∴                x4 – (y – z)4 = z(2x – z)[x2 + (x – z)2]
                                      = z(2x – z)[x2 + (x2 – 2xz + z2)]
                                      = z(2x – z)[x2 + x2 – 2xz + z2]
                                      = z(2x – z)(2x2 – 2xz + z2)

(v) ∵   a4 – 2a2b2 + b4 = (a2)2 – 2(a2)(b2) + (b2)2
                                    = (a2 – b2)2
                                    = [(a2 – b2)(a2 + b2)]
                                    = [(a – b)(a + b)(a2 + b2)]
∴         a4 – 2a2b+ b= (a – b)(a + b)(a2 + b2)


Question 5. Factorise the following expressions.
(i) p+ 6p + 8
(ii) q2 – 10q + 21
(iii) p2 + 6p – 16

Solution: 
(i) We have     p2 + 6p + 8 = P2 + 6p + 9 – 1                [∵ 8 = 9 – 1]
                                          = [(p)+ 2(p)(3) + 32] – 1
                                          = (p + 3)2 – 12      [Using a2 + 2ab + b2 = (a + b)2]
                                          = [(p + 3) + 1][(p + 3) – 1]
                                          = (p + 4)(p + 2)
∴                     p2 + 6p + 8 = (p + 4)(p + 2)

(ii) We have     q– 10q + 21 = q2 – 10q + 25 – 4       [∵ 21 = 25 – 4]
                                              = [(q)2 – 2(q)(5) + (5)2] – (2)2
                                              = [q – 5]2 – [2]2
                                              = [(q – 5) + 2][(q – 5) – 2]
                                                                         [Using a2 – b2 = (a + b) (a – b)]
                                              = (q – 3)(q – 7)

(iii) We have      p2 + 6p – 16 = p2 + 6p + 9 – 25          [∵ –16 = 9 – 25]
                                               = [(p)2 + 2(p)(3) + (3)2] – (5)2
                                               = [p + 3]2 – [5]2 [Using a2 + 2ab + b2 = (a + b)2]
                                               = [p + 3] + 5][(p + 3) – 5]
                                                                          [Using a2 – b2 = (a + b)(a – b)
                                               = (p + 8)(p – 2)

DIVISION OF ALGEBRAIC EXPRESSIONS
For division of algebraic expression by another expression:
I. We write them in the form of a fraction, such that the divisor is the denominator.
II. Factorise the numerator as well as the denominator.
III. Cancel the factors common to both the numerator and denominator.

Example 1. Divide 33(p4 + 5p3 – 24p2) by 11p(p + 8).
Solution: We have 33(p4 + 5p3 – 24p2) ÷ 11p(p + 8)
NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation
[In numerator, p is taken out common from each term]
NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation
[In numerator, 5p is splitted in to 8p – 3p such that (8p)(–3p) = –24p]
NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation
[Cancelling the factors 11p and x + 8 common to both the numerator and denominator]
Thus, 33(p4 + 5p3 – 24p2) ÷ 11p(p + 8)
                                          = 3p(p – 3)

 

The document NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation is a part of Class 8 category.
All you need of Class 8 at this link: Class 8

FAQs on NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation

1. What is factorization and why is it important in mathematics?
Ans. Factorization is the process of breaking down a number or an algebraic expression into its factors. It is important in mathematics as it helps us simplify complex expressions, solve equations, find common factors, and understand the relationship between numbers and their factors.
2. How can I factorize a quadratic expression?
Ans. To factorize a quadratic expression, look for two numbers that multiply to give the constant term (the number without any variable) and add up to give the coefficient of the linear term (the number multiplied by the variable). Once you find these numbers, you can split the linear term and factorize the expression using the distributive property.
3. Why is factorization useful in solving equations?
Ans. Factorization is useful in solving equations as it allows us to rewrite the equation in a simpler form. By factoring out common terms or using the difference of squares or perfect square trinomial identities, we can transform complex equations into simpler ones, making it easier to find the solutions.
4. Can factorization be used to simplify algebraic fractions?
Ans. Yes, factorization can be used to simplify algebraic fractions. By factorizing the numerator and denominator of a fraction, we can cancel out common factors and reduce the fraction to its simplest form. This helps in performing arithmetic operations with fractions and solving equations involving fractions.
5. What are the different techniques of factorization taught in Class 8?
Ans. In Class 8, students are taught various techniques of factorization, including: - Factorization by common factors: Finding the common factors of a given expression and factoring them out. - Factorization by grouping: Grouping terms in an expression and factoring out common factors from each group. - Factorization of quadratic expressions: Factoring quadratic expressions using techniques like splitting the middle term, completing the square, or using the difference of squares formula.
Download as PDF

Top Courses for Class 8

Related Searches

Sample Paper

,

video lectures

,

Semester Notes

,

past year papers

,

NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation

,

study material

,

NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation

,

MCQs

,

Viva Questions

,

Extra Questions

,

Free

,

pdf

,

Summary

,

Important questions

,

shortcuts and tricks

,

Objective type Questions

,

mock tests for examination

,

practice quizzes

,

Exam

,

NCERT Solutions for Class 8 Maths - NCERT Solutions(Part- 2)- Factorisation

,

ppt

,

Previous Year Questions with Solutions

;