B Com Exam  >  B Com Notes  >  Business Mathematics and Statistics  >  Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com PDF Download

The Binomial Theorem is a quick way (okay, it's a less slow way) of expanding (or multiplying out) a binomial expression that has been raised to some (generally inconveniently large) power. For instance, the expression (3x – 2)10 would be very painful to multiply out by hand. Thankfully, somebody figured out a formula for this expansion, and we can plug the binomial 3x – 2and the power 10 into that formula to get that expanded (multiplied-out) form.

The formal expression of the Binomial Theorem is as follows:

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Yeah, I know; that formula never helped me much, either. And it doesn't help that different texts use different notations to mean the same thing. The parenthetical bit above has these equivalents:

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Recall that the factorial notation "n!" means " the product of all the whole numbers between 1 and n", so, for instance, 6! = 1×2×3×4×5×6. Then the notation "10C7" (often pronounced as "ten, choose seven") means:

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Many calculators can evaluate this "n choose m" notation for you. Just look for a key that looks like "nCm" or "nCr", or for a similar item on the "Prob" or "Math" menu, or check your owner's manual under "probability" or "combinations".

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

The evaluation will probably look something like this:

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

There is another way to find the value of "nCr", and it's called "Pascal's Triangle". To make the triangle, you start with a pyramid of three 1's, like this:

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Then you get the next row of numbers by adding the pairs of numbers from above. (Where there is only one number above, you just carry down the 1.)

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Keep going, always adding pairs of numbers from the previous row..

To find, say, 6C4, you go down to the row where there is a "6" after the initial "1", and then go over to the 5th (not the 4th) entry, to find that 6C4 = 15

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

As you might imagine, drawing Pascal's Triangle every time you have to expand a binomial would be a rather long process, especially if the binomial has a large exponent on it. People have done a lot of studies on Pascal's Triangle, but in practical terms, it's probably best to just use your calculator to find nCr, rather than using the Triangle. The Triangle is cute, I suppose, but it's not terribly helpful in this context, being more time-consuming than anything else. For instance, on a test, do you want to evaluate "10C7" by calculating eleven rows of the Triangle, or by pushing four buttons on your calculator?

I could never remember the formula for the Binomial Theorem, so instead, I just learned how it worked. I noticed that the powers on each term in the expansion always added up to whatever n was, and that the terms counted up from zero to n. Returning to our intial example of (3x – 2)10, the powers on every term of the expansion will add up to 10, and the powers on the terms will increment by counting up from zero to 10:

(3x – 2)10 = 10C0 (3x)10–0(–2)0 + 10C1 (3x)10–1(–2)1 + 10C2 (3x)10–2(–2)2

10C3 (3x)10–3(–2)3 + 10C4 (3x)10–4(–2)4 + 10C5 (3x)10–5(–2)5

10C6 (3x)10–6(–2)6 + 10C7 (3x)10–7(–2)7 + 10C8 (3x)10–8(–2)8

10C9 (3x)10–9(–2)9 + 10C10 (3x)10–10(–2)10

Note how the highlighted counter number counts up from zero to 10, with the factors on the ends of each term having the counter number, and the factor in the middle having the counter number subtracted from 10. This pattern is all you really need to know about the Binomial Theorem; this pattern is how it works.

 

Your first step, given a binomial to expand, should be to plug it into the Theorem, just like I did above. Don't try to do too many steps at once. Only after you've set up your binomial in the Theorem's pattern should you start to simplify the terms. The Binomial Theorem works best as a "plug-n-chug" process, but you should plug in first; chug later. I've done my "plugging" above; now "chugging" gives me:

(1)(59049)x10(1) + (10)(19683)x9(–2) + (45)(6561)x8(4) + (120)(2187)x7(–8)

= 59049x10 – 393660x9 + 1180980x8 – 2099520x7 + 2449440x6 – 1959552x5

+ (210)(729)x6(16) + (252)(243)x5(–32) + (210)(81)x4(64)

+ (120)(27)x3(–128) + (45)(9)x2(256) + (10)(3)x(–512) + (1)(1)(1)(1024)

+ 1088640x4 – 414720x3 + 103680x2 – 15360x + 1024

As painful as the Binomial-Theorem process is, it's still easier than trying to multiply this stuff out by hand. So don't let the Formula put you off. It's just another thing to memorize, so memorize it, at least for the next test. The biggest source of errors in the Binomial Theorem (other than forgetting the Theorem) is the simplification process. Don't try to do it in your head, or try to do too many steps at once. Write things out nice and clearly, as I did above, so you have a better chance of getting the right answer. (And it would be good to do a bunch of practice problems, so the process is fairly automatic by the time you hit the next test.)

 

  • Expand (x2 + 3)6

Students trying to do this expansion in their heads tend to mess up the powers. But this isn't the time to worry about that square on the x. I need to start my answer by plugging the terms and power into the Theorem. The first term in the binomial is "x2", the second term in "3", and the power n is 6, so, counting from 0 to 6, the Binomial Theorem gives me:

(x2 + 3)6  =  6C0 (x2)6(3)0 + 6C1(x2)5(3)1 + 6C2 (x2)4(3)2 + 6C3 (x2)3(3)3

​+ 6C4 (x2)2(3)4 + 6C5 (x2)1(3)5 + 6C6 (x2)0(3)6

Then simplifying gives me

(1)(x12)(1) + (6)(x10)(3) + (15)(x8)(9) + (20)(x6)(27)

+ (15)(x4)(81) + (6)(x2)(243) + (1)(1)(729)

x12 + 18x10 + 135x8 + 540x6 + 1215x4 + 1458x2 + 729

  

  • Expand (2x – 5y)7

I'll plug "2x", "–5y", and "7" into the Binomial Theorem, counting up from zero to seven to get each term. (I mustn't forget the "minus" sign that goes with the second term in the binomial.)

(2x – 5y)7 = 7C0 (2x)7(–5y)0 + 7C1 (2x)6(–5y)1 + 7C2 (2x)5(–5y)2

7C3 (2x)4(–5y)3 + 7C4 (2x)3(–5y)4 + 7C5 (2x)2(–5y)5

7C6 (2x)1(–5y)6 + 7C7 (2x)0(–5y)7

Then simplifying gives me:   Copyright © Elizabeth Stapel 1999-2009 All Rights Reserved

(1)(128x7)(1) + (7)(64x6)(–5y) + (21)(32x5)(25y2) + (35)(16x4)(–125y3)

128x7 – 2240x6y + 16800x5y2 – 70000x4y3 + 175000x3y4 – 262500x2y5

+ (35)(8x3)(625y4) + (21)(4x2)(–3125y5) + (7)(2x)(15625y6)

+ (1)(1)(–78125y7)

+ 218750xy6 – 78125y

 

You may be asked to find a certain term in an expansion, the idea being that the exercise will be way easy if you've memorized the Theorem, but will be difficult or impossible if you haven't. So memorize the Theorem and get the easy points.
 

  • What is the fourth term in the expansion of (3x – 2)10?

I've already expanded this binomial, so let's take a look:

(3x – 2)10 = 10C0 (3x)10–0(–2)0 + 10C1 (3x)10–1(–2)1 + 10C2 (3x)10–2(–2)2

10C3 (3x)10–3(–2)3 + 10C4 (3x)10–4(–2)4 + 10C5 (3x)10–5(–2)5

10C6 (3x)10–6(–2)6 + 10C7 (3x)10–7(–2)7 + 10C8 (3x)10–8(–2)8

10C9 (3x)10–9(–2)9 + 10C10 (3x)10–10(–2)10

 

So the fourth term is not the one where I've counted up to 4, but the one where I've counted up just to 3. (This is because, just as with Javascript, the counting starts with 0, not 1.)

Note that, in any expansion, there is one more term than the number in the power. For instance:

(x + y)2 = x2 + 2xy + y2   (second power: three terms)

(x + y)3 = x3 + 3x2y + 3xy2 + y3   (third power: four terms)

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4   (fourth power: five terms)
 

The expansion in this exercise, (3x – 2)10, has power of n = 10, so the expansion will have eleven terms, and the terms will count up, not from 1 to 10 or from 1 to 11, but from 0 to 10. This is why the fourth term will not the one where I'm using "4" as my counter, but will be the one where I'm using "3".

10C3 (3x)10–3(–2)3 = (120)(2187)(x7)(–8) = –2099520x7
 

  • Find the tenth term in the expansion of (x + 3)12.

To find the tenth term, I plug x, 3, and 12 into the Binomial Theorem, using the number 10 – 1 = 9 as my counter:

12C9 (x)12–9(3)9 = (220)x3(19683) = 4330260x3
 

  • Find the middle term in the expansion of (4x – y)8.

Since this binomial is to the power 8, there will be nine terms in the expansion, which makes the fifth term the middle one. So I'll plug 4x, –y, and 8 into the Binomial Theorem, using the number 5 – 1 = 4 as my counter.

8C4 (4x)8–4(–y)4 = (70)(256x4)(y4) = 17920x4y4

You might be asked to work backwards.
 

  • Express 1296x12 – 4320x9y2 + 5400x6y4 – 3000x3y6 + 625y8 in the form (a + b)n.

I know that the first term is of the form an, because, for whatever n is, the first term is nC0 (which always equals 1) times an times b0 (which also equals 1). So 1296x12 = an. By the same reasoning, the last term is bn, so 625y8 = bn. And since there are alternating "plus" and "minus" signs, I know from experience that the sign in the middle has to be a "minus". (If all the signs had been "plusses", then the middle sign would have been a "plus" also. But in this case, I'm really looking for "(a – b)n".)

I know that, for any power n, the expansion has n + 1 terms. Since this has 5 terms, this tells me that n = 4. So to find a and b, I only have to take the 4th root of the first and last terms of the expanded polynomial:

Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

Then a = 6x3b = 5y2, there is a "minus" sign in the middle, and:

1296x12 – 4320x9y2 + 5400x6y4 – 3000x3y6 + 625y8 = (6x3 – 5y2)4

Don't let the Binomial Theorem scare you. It's just another formula to memorize. A really complicated and annoying formula, I'll grant you, but just a formula, nonetheless. Don't overthink the Theorem; there is nothing deep or meaningful here. Just memorize it, and move on.

The document Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics | Business Mathematics and Statistics - B Com is a part of the B Com Course Business Mathematics and Statistics.
All you need of B Com at this link: B Com
115 videos|142 docs

FAQs on Binomial Expansion - Interpolation and Extrapolation, Business Mathematics and Statistics - Business Mathematics and Statistics - B Com

1. What is binomial expansion and how is it used in business mathematics and statistics?
Ans. Binomial expansion is a mathematical technique used to expand a binomial expression raised to a positive integer power. In business mathematics and statistics, binomial expansion is used to solve problems related to probability, forecasting, and interpolation. It helps in calculating the probabilities of certain events occurring, predicting future trends based on historical data, and filling in missing data points within a given range.
2. How does interpolation and extrapolation relate to binomial expansion in business mathematics and statistics?
Ans. Interpolation and extrapolation are techniques used in business mathematics and statistics to estimate values within or outside the given data range, respectively. Binomial expansion can be used to perform interpolation by calculating the values of a function between two known data points. It can also be used for extrapolation by extending the binomial expansion to calculate values outside the given data range based on the established pattern.
3. Can binomial expansion be used to predict future business trends?
Ans. Yes, binomial expansion can be used to predict future business trends. By analyzing historical data and using binomial expansion techniques, businesses can identify patterns and trends in their operations. This information can then be used to forecast future outcomes and make informed decisions regarding business strategies, investments, and resource allocation.
4. How does binomial expansion aid in probability calculations for businesses?
Ans. Binomial expansion plays a crucial role in probability calculations for businesses. It allows businesses to determine the likelihood of specific events occurring by calculating the probabilities associated with different outcomes. By using binomial expansion, businesses can assess the risks and uncertainties involved in various scenarios, enabling them to make informed decisions and develop effective risk management strategies.
5. What are some real-world applications of binomial expansion in business mathematics and statistics?
Ans. Binomial expansion finds various applications in business mathematics and statistics. Some examples include: - Predicting customer behavior: Businesses can use binomial expansion to analyze customer data and predict future buying patterns, preferences, and trends. - Market research: Binomial expansion can be utilized to estimate market size, segment populations, and forecast customer demand for new products or services. - Risk analysis: Binomial expansion aids in assessing the probability of financial risks, such as default rates, loan repayment probabilities, and insurance claim probabilities. - Quality control: Binomial expansion helps in evaluating the probability of defects or errors in manufacturing processes and assessing the effectiveness of quality control measures. - Project management: Binomial expansion can be used to estimate project timelines, resource requirements, and the probability of successful completion within specified constraints.
115 videos|142 docs
Download as PDF
Explore Courses for B Com exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

ppt

,

pdf

,

past year papers

,

Objective type Questions

,

mock tests for examination

,

shortcuts and tricks

,

Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

,

Extra Questions

,

Summary

,

study material

,

Semester Notes

,

Binomial Expansion - Interpolation and Extrapolation

,

Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

,

MCQs

,

Exam

,

Binomial Expansion - Interpolation and Extrapolation

,

Sample Paper

,

Free

,

Business Mathematics and Statistics | Business Mathematics and Statistics - B Com

,

practice quizzes

,

Previous Year Questions with Solutions

,

Important questions

,

Binomial Expansion - Interpolation and Extrapolation

,

video lectures

,

Viva Questions

;