Vector Spaces
Definition: A vector space is a set V on which two operations + and · are defined, called vector addition and scalar multiplication.
The operation + (vector addition) must satisfy the following conditions:
Closure: If u and v are any vectors in V, then the sum u + v belongs to V.
(1) Commutative law: For all vectors u and v in V, u + v = v + u
(2) Associative law: For all vectors u, v, w in V, u + (v + w) = (u + v) + w
(3) Additive identity: The set V contains an additive identity element, denoted by 0, such that for any vector v in V, 0 + v = v and v + 0 = v.
(4) Additive inverses: For each vector v in V, the equations v + x = 0 and x + v = 0 have a solution x in V, called an additive inverse of v, and denoted by - v.
The operation · (scalar multiplication) is defined between real numbers (or scalars) and vectors, and must satisfy the following conditions:
Closure: If v in any vector in V, and c is any real number, then the product c · v belongs to V.
(5) Distributive law: For all real numbers c and all vectors u, v in V, c · (u + v) = c · u + c · v
(6) Distributive law: For all real numbers c, d and all vectors v in V, (c+d) · v = c · v + d · v
(7) Associative law: For all real numbers c,d and all vectors v in V, c · (d · v) = (cd) · v
(8) Unitary law: For all vectors v in V, 1 · v = v
Subspaces
Definition: Let V be a vector space, and let W be a subset of V. If W is a vector space with respect to the operations in V, then W is called a subspace of V.
Theorem: Let V be a vector space, with operations + and ·, and let W be a subset of V. Then W is a subspace of V if and only if the following conditions hold.
Sub0 W is nonempty: The zero vector belongs to W.
Sub1 Closure under +: If u and v are any vectors in W, then u + v is in W.
Sub2 Closure under ·: If v is any vector in W, and c is any real number, then c · v is in W.
556 videos|198 docs
|
1. What is a vector space and what are its properties? |
2. How do you determine if a set of vectors forms a subspace? |
3. Can a subspace contain the zero vector? |
4. What is the dimension of a vector space? |
5. How are vector spaces used in real-life applications? |
556 videos|198 docs
|
|
Explore Courses for Mathematics exam
|