A system, which has system function, can only be stable if all the poles lie inside the unit circle. First, we check whether the system is causal or not. If the system is Causal, then we go for its BIBO stability determination; where BIBO stability refers to the bounded input for bounded output condition.
This can be written as;
The above equation shows the condition for existence of Z-transform.
However, the condition for existence of DTFT signal is
Example 1
Let us try to find out the Z-transform of the signal, which is given as
Solution − Here, for −(−2)nu(n) the ROC is Left sided and Z<2
For 3nu(n) ROC is right sided and Z>3
Hence, here Z-transform of the signal will not exist because there is no common region.
Example 2
Let us try to find out the Z-transform of the signal given by
Solution − Here, for −2nu(−n−1) ROC of the signal is Left sided and Z<2
For signal (0.5)nu(n)ROC is right sided and Z>0.5
So, the common ROC being formed as 0.5<Z<2
Therefore, Z-transform can be written as;
Example 3
Let us try to find out the Z-transform of the signal, which is given as x(n) = 2r(n)
Solution − r(n) is the ramp signal. So the signal can be written as;
Here, for the signal u(−n−1) and ROC Z<1 and for 2nu(n) with ROC is Z>2.
So, Z-transformation of the signal will not exist.
Z -Transform for Causal System
Causal system can be defined as h(n) = 0,n < 0. For causal system, ROC will be outside the circle in Z-plane.
Expanding the above equation,
For causal systems, expansion of Transfer Function does not include positive powers of Z. For causal system, order of numerator cannot exceed order of denominator. This can be written as-
For stability of causal system, poles of Transfer function should be inside the unit circle in Z-plane.
Z-transform for Anti-causal System
Anti-causal system can be defined as h(n) = 0,n ≥ 0. For Anti causal system, poles of transfer function should lie outside unit circle in Z-plane. For anti-causal system, ROC will be inside the circle in Z-plane.
3 videos|50 docs|54 tests
|
1. What is the Z-transform in electrical engineering? |
2. How is the Z-transform related to the Laplace transform? |
3. What are the advantages of using the Z-transform in electrical engineering? |
4. How is the Z-transform used in digital filter design? |
5. Can the Z-transform be used for real-time signal processing? |
|
Explore Courses for Electronics and Communication Engineering (ECE) exam
|