Agricultural Engineering Exam  >  Agricultural Engineering Notes  >  Strength of Material Notes - Agricultural Engg  >  Beam-Column - Columns and Struts, Strength of Materials

Beam-Column - Columns and Struts, Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering PDF Download

A structural member subjected simultaneously to bending moment (like beam) and axial load (like column) is called Beam-Column. The bending moment in beam-column may be induced by transverse load (Figure 24.1a) or eccentricity of the axial load (Figure 24.1b). 

Fig. 24.1.

In this lesson we will derive the governing differential equation for beam-column and illustrate its application in different problems.

1 Differential Equation for Beam-Column

Consider a slender member subjected simultaneously to an arbitrary lateral load and an axial load as shown in Figure 24.2a. Free body diagram of an infinitesimal segment dx, in its deformed configuration is shown in Figure

Fig. 24.2.

Applying the static equilibrium conditions,

\[\sum{{F_x}=0}\Rightarrow V + dV - V + q(x)dx\]

\[{{dV} \over {dx}}=-q(x)\]                                     (24.1)

\[\sum {M = 0}\Rightarrow-\left( {M + dM} \right) + M + Vdx + Pdy + qdx{{dx} \over 2}=0\]

\[\Rightarrow-{{dM} \over {dx}} + P{{dy} \over {dx}}=-V\]   [ Neglecting second order term (dx)2]                   (24.2)

Differentiating Equation (24.2) with respect to y,

\[\Rightarrow-{{{d^2}M} \over {d{x^2}}} + {d \over {dx}}\left( {P{{dy} \over {dx}}} \right)=-{{dV} \over {dx}}\]                         (24.3)

From the equation of elastic line, we have,

\[{{{d^2}y} \over {d{x^2}}}=-{M \over {EI}}\]                              (24.4)

Substituting Equations (24.1) and (24.4), Equation (24.3) becomes,

\[{{{d^4}y} \over {d{x^4}}} + {d \over {dx}}\left( {P{{dy} \over {dx}}} \right)=q(x)\]                               (24.5)

Equation (24.5)  is the beam-column governing differential equation.

 Example

Consider a beam colum subjected simultaneously to a transverse load Q at its mid-span and axial compressive force P as shown in Figure 24.3a.

Fig. 24.3.

From Free body diagram of the whole structure (Figure 24.3b), support reactions are,

\[{A_x} = P\]  and   \[{A_y} = {B_y} = Q/2\]

From Free body diagram Figure 24.3c,

\[\sum {{M_x} = 0}\Rightarrow-{M_x} + {Q \over 2}x + Py = 0\]   for  \[0 \le x \le l/2\]                     (24.6)

Substituting equation of elastic line (Equation 24.4) into Equation 24.6, we have,

\[EI{{{d^2}y} \over {d{x^2}}} + {Q \over 2}x + Py = 0\]                                (24.7)

\[\Rightarrow {{{d^2}y} \over {d{x^2}}} + {k^2}y=-{{Qx} \over {2P}}{k^2}\]           \[\left[ {{k^2}={P \over {EI}}} \right]\]             (24.8)

The general solution of the above differential equation,

\[y = {y_h} + {y_p}\]                     (24.8)

Homogeneous solution yh is,

\[{y_h}=A\cos kx + B\sin kx\]                (24.10)

Particular solution    yp      is,

\[{y_p}=C + Dx\]                                     (24.11)

Substituting yp into Equation (24.8),

\[{{{d^2}{y_p}}\over{d{x^2}}}+{k^2}{y_p}=-{{Qx}\over{2P}}{k^2}\]

\[\Rightarrow{k^2}\left({C+Dx}\right)=-{{Qx}\over{2P}}{k^2}\]

\[\Rightarrow C=0\]  and  \[D=-{Q \over {2P}}\]

Therefore,

\[y=A\cos kx + B\sin kx -{{Qx}\over{2P}}\]                                (24.12)

Constants A and B are determined from the following boundary conditions,

y = 0 at x =0 \[\Rightarrow A=0\]

\[{{dy} \over {dx}}=0\] at x = l/2

\[Bk\cos \left( {\frac{{kl}}{2}} \right) - \frac{Q}{{2P}} = 0 \Rightarrow B = \frac{Q}{{2Pk\cos \left( {\frac{{kl}}{2}} \right)}}\]

Therefore,

\[y = \frac{{Q\sin kx}}{{2Pk\cos \left( {\frac{{kl}}{2}} \right)}} - \frac{{Qx}}{{2P}}\]  for \[0 \le x \le l/2\]                         (24.13)

In this case the maximum displacement occurs at the mid-span,

\[{y_{\max }}=\frac{{Q\sin\left({\frac{{kl}}{2}}\right)}}{{2Pk\cos\left({\frac{{kl}}{2}}\right)}}-\frac{{Ql}}{{4P}}=\frac{Q}{{2Pk}}\left[{\tan\left({\frac{{kl}}{2}} \right)-\frac{{kl}}{2}}\right]\]

\[\Rightarrow {y_{\max }}=\frac{{Q{l^3}{k^2}}}{{2Pk{}^3{l^3}}}\left[{\tan\left({\frac{{kl}}{2}}\right) -\frac{{kl}}{2}}\right]\]

\[\Rightarrow {y_{\max }}=\frac{{Q{l^3}}}{{48EI}}\left[{\frac{{3\left({\tan\alpha-\alpha}\right)}}{{{\alpha^3}}}}\right]\]     \[\left[{\alpha=\frac{{kl}}{2}}\right]\]

\[\Rightarrow {y_{\max}}={y_0}\left[{\frac{{3\left({\tan\alpha-\alpha}\right)}}{{{\alpha^3}}}}\right]\]............(24.14)

where, \[{y_0}={{Q{l^3}} \over {48EI}}\]  is the deflection at the mid-span when P = 0.

Now, series expansion of  \[\tan \alpha\]  is   ,

\[\tan \alpha=\alpha+{{{\alpha ^3}} \over 3}+{{2{\alpha ^5}} \over {15}}+{{17{\alpha ^7}}\over {315}}+\cdots\]

\[\Rightarrow {{3\left({\tan \alpha-\alpha } \right)}\over {{\alpha ^3}}}=1+{{2{\alpha ^2}}\over 5}+{{17{\alpha ^4}}\over{105}}+\cdots\]

Therefore,

\[{y_{\max }}={y_0}\left( {1+{{2{\alpha ^2}} \over 5}+{{17{\alpha ^4}}\over{105}}+\cdots } \right)\]            (24.15)

Now,

\[{\alpha ^2}={{{k^2}{l^2}} \over 4}={{P{l^2}} \over {4EI}}=2.46{P \over {{P_E}}}\]          \[\left[ {{P_E}={{{\pi ^2}EI} \over {{l^2}}}} \right]\]

Hence,

\[{y_{\max }}={y_0}\left( {1+0.984{P \over {{P_E}}}+0.998{{\left( {{P \over {{P_E}}}}\right)}^2}+\cdots }\right)\]

\[{y_{\max }}={y_0}\left({1+{P \over {{P_E}}}+{{\left({{P \over {{P_E}}}} \right)}^2}+\cdots } \right)\]

\[={y_{\max }}={y_0}{1 \over {1 - P/{P_E}}}\]   [From power series sum for ]   (24.16)

The factor \[{1 \over {1 - P/{P_E}}}\]  is called the amplification factor or magnification factor.

The Maximum bending moment,

\[{M_{\max }}={Q \over 2}{l \over 2} + P{y_{\max }}\]

\[\Rightarrow {M_{\max }}={{Ql} \over 4} + {{PQ{l^3}} \over {48EI}}{1 \over {1 - P/{P_E}}}\]

\[\Rightarrow {M_{\max }}={{Ql} \over 4}\left( {1 + {{P{l^2}} \over {12EI}}{1 \over {1 - P/{P_E}}}} \right)\]

\[\Rightarrow {M_{\max }}={{Ql} \over 4}\left( {1 + 0.82{P \over {{P_E}}}{1 \over {1 - P/{P_E}}}} \right)\]\[\left[ {{\rm{substituting }}{P_E}= {{{\pi ^2}EI} \over {{l^2}}}} \right]\]

\[\Rightarrow {M_{\max }}={{Ql} \over 4}\left( {{{1 - 0.18P/{P_E}} \over {1 - P/{P_E}}}} \right)\]

The term \[\left( {{{1 - 0.18P/{P_E}} \over {1 - P/{P_E}}}} \right)\] is called amplification factor for bending moment due to axial load.

The document Beam-Column - Columns and Struts, Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering is a part of the Agricultural Engineering Course Strength of Material Notes - Agricultural Engg.
All you need of Agricultural Engineering at this link: Agricultural Engineering
34 docs
Explore Courses for Agricultural Engineering exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering

,

Exam

,

Beam-Column - Columns and Struts

,

Beam-Column - Columns and Struts

,

ppt

,

Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering

,

Sample Paper

,

MCQs

,

Extra Questions

,

Strength of Materials | Strength of Material Notes - Agricultural Engg - Agricultural Engineering

,

Semester Notes

,

Free

,

Viva Questions

,

Beam-Column - Columns and Struts

,

study material

,

Summary

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Objective type Questions

,

Important questions

,

practice quizzes

,

pdf

,

video lectures

,

past year papers

,

mock tests for examination

;