1. Hadoop Ecosystem Components
The objective of this Apache Hadoop ecosystem components tutorial is to have an overview what are the different components of Hadoop ecosystem that make Hadoop so powerful and due to which several Hadoop job roles are available now. We will also learn about Hadoop ecosystem components like HDFS and HDFS components, MapReduce, YARN, Hive, Apache Pig, Apache HBase and HBase components, HCatalogue, Avro, Thrift, Drill, Apache mahout, Sqoop, Apache Flume, Ambari, Zookeeper and Apache OOzie to deep dive into Big Data Hadoop and to acquire master level knowledge of the Hadoop Ecosystem.
2. Introduction to Hadoop Ecosystem
As we can see the different Hadoop ecosystem explained in the above figure of Hadoop Ecosystem. Now We are going to discuss the list of Hadoop Components in this section one by one in detail.
2.1. Hadoop Distributed File System
It is the most important component of Hadoop Ecosystem. HDFS is the primary storage system of Hadoop. Hadoop distributed file system (HDFS) is a java based file system that provides scalable, fault tolerance, reliable and cost efficient data storage for Big data. HDFS is a distributed filesystem that runs on commodity hardware. HDFS is already configured with default configuration for many installations. Most of the time for large clusters configuration is needed. Hadoop interact directly with HDFS by shell-like commands.
HDFS Components:
There are two major components of Hadoop HDFS- NameNode and DataNode. Let’s now discuss these Hadoop HDFS Components-
i. NameNode
It is also known as Master node. NameNode does not store actual data or dataset. NameNode stores Metadata i.e. number of blocks, their location, on which Rack, which Datanode the data is stored and other details. It consists of files and directories.
Tasks of HDFS NameNode
ii. DataNode
It is also known as Slave. HDFS Datanode is responsible for storing actual data in HDFS. Datanode performs read and write operation as per the request of the clients. Replica block of Datanode consists of 2 files on the file system. The first file is for data and second file is for recording the block’s metadata. HDFS Metadata includes checksums for data. At startup, each Datanode connects to its corresponding Namenode and does handshaking. Verification of namespace ID and software version of DataNode take place by handshaking. At the time of mismatch found, DataNode goes down automatically.
Tasks of HDFS DataNode
This was all about HDFS as a Hadoop Ecosystem component.
2.2. MapReduce
Hadoop MapReduce is the core Hadoop ecosystem component which provides data processing. MapReduce is a software framework for easily writing applications that process the vast amount of structured and unstructured data stored in the Hadoop Distributed File system.
MapReduce programs are parallel in nature, thus are very useful for performing large-scale data analysis using multiple machines in the cluster. Thus, it improves the speed and reliability of cluster this parallel processing.
Working of MapReduce
Hadoop Ecosystem component ‘MapReduce’ works by breaking the processing into two phases:
Each phase has key-value pairs as input and output. In addition, programmer also specifies two functions: map function and reduce function
Map function takes a set of data and converts it into another set of data, where individual elements are broken down into tuples (key/value pairs). Read Mapper in detail.
Reduce function takes the output from the Map as an input and combines those data tuples based on the key and accordingly modifies the value of the key. Read Reducer in detail.
Features of MapReduce
2.3. YARN
Hadoop YARN (Yet Another Resource Negotiator) is a Hadoop ecosystem component that provides the resource management. Yarn is also one the most important component of Hadoop Ecosystem. YARN is called as the operating system of Hadoop as it is responsible for managing and monitoring workloads. It allows multiple data processing engines such as real-time streaming and batch processing to handle data stored on a single platform.
YARN has been projected as a data operating system for Hadoop2. Main features of YARN are:
2.4. Hive
The Hadoop ecosystem component, Apache Hive, is an open source data warehouse system for querying and analyzing large datasets stored in Hadoop files. Hive do three main functions: data summarization, query, and analysis.
Hive use language called HiveQL (HQL), which is similar to SQL. HiveQL automatically translates SQL-like queries into MapReduce jobs which will execute on Hadoop.
Main parts of Hive are:
2.5. Pig
Apache Pig is a high-level language platform for analyzing and querying huge dataset that are stored in HDFS. Pig as a component of Hadoop Ecosystem uses PigLatin language. It is very similar to SQL. It loads the data, applies the required filters and dumps the data in the required format. For Programs execution, pig requires Java runtime environment.
Features of Apache Pig:
2.6. HBase
Apache HBase is a Hadoop ecosystem component which is distributed database that was designed to store structured data in tables that could have billions of row and millions of columns. HBase is scalable, distributed, and Nosql database that is built on top of HDFS. HBase, provide real time access to read or write data in HDFS.
Components of Hbase
There are two HBase Components namely- HBase Master and RegionServer.
i. HBase Master
It is not part of the actual data storage but negotiates load balancing across all RegionServer.
ii. RegionServer
It is the worker node which handle read, write, update and delete requests from clients. Region server process runs on every node in Hadoop cluster. Region server runs on HDFS DateNode.
2.7. HCatalog
It is a table and storage management layer for Hadoop. HCatalog supports different components available in Hadoop ecosystem like MapReduce, Hive, and Pig to easily read and write data from the cluster. HCatalog is a key component of Hive that enables the user to store their data in any format and structure.
By default, HCatalog supports RCFile, CSV, JSON, sequenceFile and ORC file formats.
Benefits of HCatalog:
2.8. Avro
Acro is a part of Hadoop ecosystem and is a most popular Data serialization system. Avro is an open source project that provides data serialization and data exchange services for Hadoop. These services can be used together or independently. Big data can exchange programs written in different languages using Avro.
Using serialization service programs can serialize data into files or messages. It stores data definition and data together in one message or file making it easy for programs to dynamically understand information stored in Avro file or message.
Avro schema – It relies on schemas for serialization/deserialization. Avro requires the schema for data writes/read. When Avro data is stored in a file its schema is stored with it, so that files may be processed later by any program.
Dynamic typing – It refers to serialization and deserialization without code generation. It complements the code generation which is available in Avro for statically typed language as an optional optimization.
Features provided by Avro:
2.9. Thrift
It is a software framework for scalable cross-language services development. Thrift is an interface definition language for RPC(Remote procedure call) communication. Hadoop does a lot of RPC calls so there is a possibility of using Hadoop Ecosystem componet Apache Thrift for performance or other reasons.
2.10. Apache Drill
The main purpose of the Hadoop Ecosystem Component is large-scale data processing including structured and semi-structured data. It is a low latency distributed query engine that is designed to scale to several thousands of nodes and query petabytes of data. The drill is the first distributed SQL query engine that has a schema-free model.
Application of Apache drill
The drill has become an invaluable tool at cardlytics, a company that provides consumer purchase data for mobile and internet banking. Cardlytics is using a drill to quickly process trillions of record and execute queries.
Features of Apache Drill:
The drill has specialized memory management system to eliminates garbage collection and optimize memory allocation and usage. Drill plays well with Hive by allowing developers to reuse their existing Hive deployment.
2.11. Apache Mahout
Mahout is open source framework for creating scalable machine learning algorithm and data mining library. Once data is stored in Hadoop HDFS, mahout provides the data science tools to automatically find meaningful patterns in those big data sets.
Algorithms of Mahout are:
2.12. Apache Sqoop
Sqoop imports data from external sources into related Hadoop ecosystem components like HDFS, Hbase or Hive. It also exports data from Hadoop to other external sources. Sqoop works with relational databases such as teradata, Netezza, oracle, MySQL.
Features of Apache Sqoop:
2.13. Apache Flume
Flume efficiently collects, aggregate and moves a large amount of data from its origin and sending it back to HDFS. It is fault tolerant and reliable mechanism. This Hadoop Ecosystem component allows the data flow from the source into Hadoop environment. It uses a simple extensible data model that allows for the online analytic application. Using Flume, we can get the data from multiple servers immediately into hadoop.
2.14. Ambari
Ambari, another Hadop ecosystem component, is a management platform for provisioning, managing, monitoring and securing apache Hadoop cluster. Hadoop management gets simpler as Ambari provide consistent, secure platform for operational control.
Features of Ambari:
2.15. Zookeeper
Apache Zookeeper is a centralized service and a Hadoop Ecosystem component for maintaining configuration information, naming, providing distributed synchronization, and providing group services. Zookeeper manages and coordinates a large cluster of machines.
Features of Zookeeper:
2.16. Oozie
It is a workflow scheduler system for managing apache Hadoop jobs. Oozie combines multiple jobs sequentially into one logical unit of work. Oozie framework is fully integrated with apache Hadoop stack, YARN as an architecture center and supports Hadoop jobs for apache MapReduce, Pig, Hive, and Sqoop.
In Oozie, users can create Directed Acyclic Graph of workflow, which can run in parallel and sequentially in Hadoop. Oozie is scalable and can manage timely execution of thousands of workflow in a Hadoop cluster. Oozie is very much flexible as well. One can easily start, stop, suspend and rerun jobs. It is even possible to skip a specific failed node or rerun it in Oozie.
There are two basic types of Oozie jobs:
This was all about Components of Hadoop Ecosystem
3. Conclusion: Components of Hadoop Ecosystem
We have covered all the Hadoop Ecosystem Components in detail. Hence these Hadoop ecosystem components empower Hadoop functionality. As you have learned the components of Hadoop ecosystem, so refer Hadoop installation guideto use Hadoop functionality. If you like this blog or feel any query so please feel free to share with us.
Reference:
http://hadoop.apache.org/
1 videos|14 docs
|
1. What is Hadoop Ecosystem and why is it important in IT & Software? |
2. What is Hadoop Distributed File System (HDFS) and what is its role in the Hadoop Ecosystem? |
3. What is the role of MapReduce in the Hadoop Ecosystem? |
4. How does Hive contribute to the Hadoop Ecosystem? |
5. What is the significance of HBase in the Hadoop Ecosystem? |
|
Explore Courses for Software Development exam
|