Class 6 Exam  >  Class 6 Notes  >  RD Sharma Solutions for Class 6 Mathematics  >  RD Sharma Solutions -Page No.5.19, Negative Numbers And Integers, Class 6, Maths

Page No.5.19, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics PDF Download

PAGE NO 5.19:

Question 4: If x is a positive integer, then
(a) x + |x| = 0
(b) x − |x| = 0  
(c) x + |x| = −2x    
(d) x = − |x|

ANSWER:

If x is positive integer, then |x| = x. So, x + |x| = x + x = 2x and x − |x| = x − x = 0.             Hence, the correct option is (b).


Question 5: If x is a negative integer, then
(a) x + |x| = 0              
(b) x − |x| = 0                    
(c) x + |x| = 2x                
(d) x − |x| = − 2x

ANSWER:

If x is negative integer, then |x| = −x. So
x + |x| = x − x = 0
x − |x| = x − (− x) = x + x = 2x
Hence, the correct option is (a).


Question 6: If x is greater than 2, then |2 − x| =
(a) 2 − x              
(b) x − 2                    
(c) 2 + x                
(d) − x − 2

ANSWER:

If a is negative integer, then |a| = − a.
Here, x is greater than 2. So, 2 − x is negative.
Therefore, |2 − x| = − (2 − x) = − 2 + x = x − 2.
Hence, the correct option is (b).


Question 7: 9 + |− 4| is equal to

(a) 5                        
(b) − 5                      
(c) 13                            
(d) −13

ANSWER:

Here, |− 4| = 4. Therefore
9 + |− 4| = 9 + 4 = 13
Hence, the correct option is (c).


Question 8: (− 35) + (− 32) is equal to
(a) 67                        
(b) − 67                      
(c) − 3                            
(d) 3

ANSWER:

(− 35) + (− 32) = − (35 + 32) = − 67
Hence, the correct option is (b).


Question 9: (− 29) + 5 is equal to
(a) 24                        
(b) 34                      
(c) − 34                            
(d) − 24

ANSWER:

(− 29) + 5 = − (29 − 5) = − 24
Thus, the correct option is (d).


Question 10: |− |− 7| − 3| is equal to

(a) − 7                      
(b) 7                              
(c) 10                                    
(d) − 10

ANSWER:

|− |− 7| − 3| = |− 7 − 3|    (∵ |− 7| = 7)
= |− 10|                                
= 10                (∵ |− 10| = 10)
Hence, the correct option is (c).


Question 11: The successor of − 22 is

(a) − 23                      
(b) − 21                              
(c) 23                                    
(d) 21

ANSWER:

If a is an integer, then its successor is a + 1. So
Successor of − 22 = − 22 + 1 = − (22 − 1) = − 21
Hence, the correct option is (b).


Question 12: If the sum of two integers is − 26 and one of them is 14, then the other integer is
(a) − 12                      
(b) 12                              
(c) − 40                              
(d) 40

ANSWER:

Sum of two integers = − 26
One of the two numbers = 14
∴ second number = − 26 − 14
= − (26 + 14)
= − 40
Hence, the correct option is (c).


Question 13: Which of the following pairs of integers have 5 as a difference?
(a) 10, 5                      
(b) − 10, − 5                          
(c) 15, − 20                              
(d) both (a) and (b)

ANSWER:

(a) 10 − 5 = 5
(b) (− 5) − (− 10) = − 5 + 10 = 5
(c) 15 − (− 20) = 15 + 20 = 35
Hence, the correct option is (d).


Question 14: If the product of two integers is 72 and one of them is − 9, then the other integers is

(a) − 8                      
(b) 8                          
(c) 81                              
(d) 63

ANSWER:

Product of integers = 72
One of the two integers = − 9
So, the other integer is 72 ÷÷ (− 9) = − 8.
Hence, the option is (a).


Question 15: On subtracting − 7 from − 14, we get
(a) − 12                      
(b) − 7                          
(c) −14                              
(d) 21

ANSWER:

Required number = − 14 − (− 7)
= − 14 + 7
= − (14 − 7)
= − 7
Hence, the correct option is (b).


Question 16: The largest number that divides 64 and 72 and leave the remainders 12 and 7 respectively, is
(a) 17                            
(b) 13                                      
(c) 14                                      
(d) 18

ANSWER:

Subtract 12 and 7 from 64 and 72 respectively.
64 − 12 = 52
72 − 7 = 65
The required number is the HCF of 52 and 65.
Now
52 = 4 ×× 13
65 = 5 ×× 13
∴ HCF 52 and 65 = 13
Therefore, the largest number that divides 64 and 72 and leave the remainder 12 and 7 respectively, is 13.
Hence, the correct option is (b).


Question 17: The sum of two integers is − 23. If one of them is 18, then the other is
(a) −14                            
(b) 14                                    
(c) 41                                    
(d) −41

ANSWER:

Sum of integers = − 23
One of the numbers = 18
Other number = (− 23) − (18)
= − 23 − 18
= − (23 + 18)
= − 41
Therefore, the other number is − 41.
Hence, the correct option is (d).


Question 18: The sum of two integers is − 35. If one of them is 40, then the other is
(a) 5
(b) − 75  
(c) 75            
(d) − 5
ANSWER:

Sum of integers = − 35
One of the numbers = 40
Other number = (− 35) − (40)
= − 35 − 40
= − (35 + 40)
= − 75
Therefore, the other number is − 75.
Hence, the correct option is (b).


Question 19:On subtracting − 5 from 0, we get

(a) − 5                             

(b) 5                                    

(c) 50                                    

(d) 0

ANSWER: Here, 0 − (− 5) = 0 + 5 = 5.
Therefore, on subtracting − 5 from 0, we get 5.
Hence, the correct option is (b).

Question 20: (− 16) + 14 − (− 13) is equal to

(a) − 11                             

(b) 12                                    

(c) 11                                    

(d) − 15
ANSWER: 
(− 16) + 14 − (− 13) = (− 16) + 14 + 13           (Additive inverse of − 13 is 13)

= (− 16) + 27

= 27 − 16

= 11

Hence, the correct option is (c).


Question 21: (− 2) ×× (− 3) ×× 6 ×× (− 1) is equal to

(a) 36                            
(b) − 36                                
(c) 6                                    
(d) − 6

ANSWER:

(− 2) ×× (− 3) ×× 6 ×× (− 1) = (2 ×× 3) ×× 6 ×× (− 1)
= 6 ×× 6 ×× (− 1)
= 36 ×× (− 1)
= − (36 ×× 1)
= − 36
Hence, the correct option is (b).


Question 22: 86 + (−28) + 12 + (−34) is equal to
(a) − 36                            
(b) 40                                
(c) 36                                    
(d) − 40

ANSWER:

86 + (−28) + 12 + (−34) = 86 + (−28) − (34 − 12)
= 86 + (−28) − 22
= (86 − 28) − (34 − 12)
= 58 − 22
= 36
Hence, the correct option is (c).


Question 23:(−12) ×× (−9) − 6 ×× (−8) is equal to

(a) 156                            
(b) 60                                
(c) −156                                    
(d) − 60

ANSWER:(−12) ×× (−9) − 6 ×× (−8) = (12 ×× 9) − 6 ×× (−8)

= 108 − 6 ×× (−8)

= 108 + 6 ×× 8

= 108 + 48

= 156

Hence, the correct option is (a).

The document Page No.5.19, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics is a part of the Class 6 Course RD Sharma Solutions for Class 6 Mathematics.
All you need of Class 6 at this link: Class 6
99 docs

Top Courses for Class 6

FAQs on Page No.5.19, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions - RD Sharma Solutions for Class 6 Mathematics

1. What are negative numbers and integers in mathematics?
Ans. Negative numbers are numbers less than zero, denoted with a negative sign (-). Integers, on the other hand, include both positive and negative numbers, including zero.
2. How do we represent negative numbers on a number line?
Ans. To represent negative numbers on a number line, we move to the left from zero. Each negative number is placed at a distance of one unit from the previous number.
3. What is the difference between negative numbers and positive numbers?
Ans. The main difference between negative and positive numbers is that negative numbers are less than zero, while positive numbers are greater than zero. Negative numbers are represented with a negative sign (-), while positive numbers are either represented without a sign or with a positive sign (+).
4. Can negative numbers be added or subtracted?
Ans. Yes, negative numbers can be added or subtracted. When adding or subtracting negative numbers, we can treat the negative sign as a subtraction sign. For example, (-3) + (-5) can be solved as (-3) - 5, which gives us -8.
5. How can negative numbers and integers be used in real life situations?
Ans. Negative numbers and integers are used in various real-life situations, such as temperature readings (below zero), bank account balances (debits and credits), distances (forward and backward movements), and elevations (above and below sea level). They help us understand and represent situations where values can be positive or negative.
99 docs
Download as PDF
Explore Courses for Class 6 exam

Top Courses for Class 6

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

Class 6

,

ppt

,

Page No.5.19

,

Objective type Questions

,

video lectures

,

Important questions

,

Class 6

,

practice quizzes

,

study material

,

Page No.5.19

,

past year papers

,

Extra Questions

,

Exam

,

Negative Numbers And Integers

,

Free

,

pdf

,

Semester Notes

,

shortcuts and tricks

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

Summary

,

Negative Numbers And Integers

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

mock tests for examination

,

Sample Paper

,

Viva Questions

,

Previous Year Questions with Solutions

,

MCQs

,

Negative Numbers And Integers

,

Page No.5.19

,

Class 6

;