Class 6 Exam  >  Class 6 Notes  >  RD Sharma Solutions for Class 6 Mathematics  >  RD Sharma Solutions -Page No.5.20, Negative Numbers And Integers, Class 6, Maths

Page No.5.20, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics PDF Download

PAGE NO 5.20:

Question 1: The successor of − 79 is
(a) − 80                            
(b) − 78                                
(c) 80                                  
(d) 78

ANSWER: If a is an integer, then its successor is a + 1. So
Successor of − 79 = − 79 + 1
= − (79 − 1)
= − 78
Hence, the correct option is (b).


Question 2: The predecessor of − 99 is
(a) − 98                            
(b) − 100                                
(c) 98                                  
(d) 100

ANSWER:

If a is an integer, then its predecessor is a − 1. So
Predecessor of − 99 = − 99 − 1
= − (99 + 1)
= − 100
Hence, the correct option is (b).


Question 3: The integer 8 more than − 12 is
(a) 4                            
(b) − 4                                
(c) − 20                                  
(d) 20

ANSWER:The integer 8 more than − 12 is (− 12) + 8.
Now
(− 12) + 8 = − (12 − 8) = − 4
Hence, the correct option is (b).


Question 4:What should be added to 18 to get − 34?
(a) 52                            
(b) − 52                                
(c) − 16                                  
(d) 16

ANSWER:The required number is (− 34) − 18.
Now
(− 34) − 18 = − (34 + 18) = − 52
Hence, the correct option is (b).


Question 5: The additive inverse of 17 is
(a) − 17                            
(b) 17                                
(c) 117117                                  
(d) −117-117

ANSWER: If a is an integer, then its additive inverse is − a.
So
Additive inverse of 17 = − 17
Hence, the correct option is (a).


Question 6: If an integer a is greater than 7, then |7 − a| =
(a) 7 − a  
(b) a − 7  
(c) 7 + a  
(d) − 7 − a

ANSWER: If x is negative integer, then |x| = − x.
Here, a is greater than 7, so 7 − a is negative.
Therefore
|7 − a| = − (7 − a) = − 7 + a = a − 7
Hence, the correct option is (b).


Question 7: The additive identity element in the set of integers is
(a) 1                            
(b) − 1                                
(c) 0                                  
(d) None of these

ANSWER: If a is an integer, then a + 0 = 0 + a = a. Here, 0 is the additive identity element in the set of integers.
Hence, the correct option is (c).


Question 8: Which of the following pairs of integers have 9 as difference?
(a) 19, 10                        
(b) − 19, − 10                                
(c) 19, − 10                                
(d) (a) and (b) both

ANSWER: (a) 19 − 10 = 9
(b) − 10 − (− 19) = − 10 + 19 = 19 − 10 = 9
(c) 19 − (− 10) = 19 + 10 = 29
Thus, (a) and (b) both are correct.
Hence, the correct option is (d).


Question 9: When 47 is subtracted from − 23, we get?
(a) 70                        
(b) 24                            
(c) − 24                                
(d) − 70

ANSWER: (− 23) − (47) = − 23 − 47
= − (23 + 47)
= − 70
Thus, when 47 is subtracted from − 23, we get − 70.
Hence, the correct option is (d).


Question 10: If ∆ is an operation on integers such that a ∆ b = a − b − 2, for all integers a, b. Then, 7 ∆ (− 4) =
(a) 11                        
(b) − 9                            
(c) 9                                
(d) 1

ANSWER: Here, the operation ∆ is defined as a ∆ b = a − b − 2. So
7 ∆ (− 4) = 7 − (− 4) − 2
= 7 + 4 − 2
= 11 − 2
= 9
Hence, the correct option is (c).


Question 11: The sum of two integers is 84. If one of the integers is 44, determine the other.

ANSWER: Sum of two integers = 84
One of the integers = 44
Other integer = Sum of two integers − One of the integers
= 84 − 44
= 40
Hence, the other integer is 40.


Question 12: Simplify: 9 ×× (− 16) + (− 17) ×× (− 16).

ANSWER: 9 ×× (− 16) + (− 17) ×× (− 16) = − (9 ×× 16) + (17 ×× 16)
= − 144 + 272
= 272 − 144
= 128
Hence, 9 ×× (− 16) + (− 17) ×× (− 16) = 128.


Question 13: If x = (− 23) + 22 + (− 23) + 22 + ... + (40 terms) and y = 11 + (− 10) + 11 + (− 10) + ... + (20 terms), then find y − x.

ANSWER: x = (− 23) + 22 + (− 23) + 22 + ... + (40 terms)
= (− 23) + (− 23) + ... + (20 terms) + 22 + 22 + ... + (20 terms)
= 20 ×× (− 23) + 20 ×× 22
= 20 ×× (− 23 + 22)
= 20 ×× (− 1)
= − 20
Now
y = 11 + (− 10) + 11 + (− 10) + ... + (20 terms)
= 11 + 11 + ... + (10 terms) + (− 10) + (− 10) + ... + (10 terms)
= 11 ×× 10 + (− 10) ×× 10
= 110 − 100
= 10
Therefore, y − x = 10 − (− 20) = 10 + 20 = 30.


Question 15: Calculate 1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + ... + 49 − 50.

ANSWER: 1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + ... + 49 − 50
= (1 − 2) + (3 − 4) + (5 − 6) + (7 − 8) + ... + (49 − 50)
= (− 1) + (− 1) + (− 1) + ... + 25 terms
= (− 1) ×× 25
= − 25
Hence, 1 − 2 + 3 − 4 + 5 − 6 + 7 − 8 + ... + 49 − 50 = − 25.

The document Page No.5.20, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics is a part of the Class 6 Course RD Sharma Solutions for Class 6 Mathematics.
All you need of Class 6 at this link: Class 6
99 docs

Top Courses for Class 6

FAQs on Page No.5.20, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions - RD Sharma Solutions for Class 6 Mathematics

1. What are negative numbers and integers?
Ans. Negative numbers are numbers less than zero and are denoted with a negative sign (-). Integers, on the other hand, are whole numbers that can be positive, negative, or zero.
2. How can negative numbers be represented on a number line?
Ans. Negative numbers can be represented on a number line by placing the negative sign (-) before the number and marking it to the left of zero. For example, -3 would be represented to the left of zero on the number line.
3. What is the difference between negative numbers and positive numbers?
Ans. The main difference between negative numbers and positive numbers is their sign. Negative numbers have a negative sign (-) before the number, while positive numbers have no sign or a positive sign (+) before the number. Negative numbers are less than zero, while positive numbers are greater than zero.
4. How can negative numbers be added or subtracted?
Ans. To add or subtract negative numbers, we need to follow certain rules. When adding two negative numbers, we add their magnitudes and put a negative sign before the sum. For example, (-3) + (-5) = -8. When subtracting a negative number, it is equivalent to adding its positive counterpart. For example, (-8) - (-3) = (-8) + 3 = -5.
5. Can negative numbers be multiplied or divided?
Ans. Yes, negative numbers can be multiplied or divided. When multiplying two negative numbers, the product is positive. For example, (-4) * (-2) = 8. When dividing a negative number by a positive number or vice versa, the quotient is negative. For example, (-10) / 2 = -5.
99 docs
Download as PDF
Explore Courses for Class 6 exam

Top Courses for Class 6

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Class 6

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

Viva Questions

,

past year papers

,

Summary

,

Sample Paper

,

practice quizzes

,

Extra Questions

,

Page No.5.20

,

Negative Numbers And Integers

,

Objective type Questions

,

ppt

,

mock tests for examination

,

Free

,

shortcuts and tricks

,

Negative Numbers And Integers

,

Semester Notes

,

study material

,

Page No.5.20

,

Negative Numbers And Integers

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

Previous Year Questions with Solutions

,

Class 6

,

Exam

,

MCQs

,

video lectures

,

Important questions

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

pdf

,

Class 6

,

Page No.5.20

;