Class 6 Exam  >  Class 6 Notes  >  RD Sharma Solutions for Class 6 Mathematics  >  RD Sharma Solutions -Page No.5.21, Negative Numbers And Integers, Class 6, Maths

Page No.5.21, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics PDF Download

Question 16: Evaluate 7 ×× |− 15| − |− 9| ×× 8.

ANSWER: ∵ |− 15| = 15 and |− 9| = 9
∴ 7 ×× |− 15| − |− 9| ×× 8 = 7 ×× 15 − 9 ×× 8
= 105 − 72
= 33
Hence, 7 ×× |− 15| − |− 9| ×× 8 = 33.


Question 17: Find the value of 38 − (− 25) − 58 + (− 15) + 23 − (− 8).

ANSWER: 38 − (− 25) − 58 + (− 15) + 23 − (− 8)
= 38 − (− 25) − 58 + (− 15) + 23 +8
= 38 − (− 25) − 58 + (− 15) + 31
= 38 − (− 25) − 58 + (31 − 15)
= 38 − (− 25) − 58 + 16
= 38 − (− 25) − (58 − 16)
= 38 − (− 25) − 42
= 38 + 25 − 42
= 38 − (42 − 25)
= 38 − 17
= 21
Hence, 38 − (− 25) − 58 + (− 15) + 23 − (− 8) = 21.

Question 18: Simplify: 5 + (− 5) + 5 + (− 5) + ...
(i) When the number of terms is 20              
(ii) When the number of terms is 25

ANSWER: (i) When the number of terms is 20            
5 + (− 5) + 5 + (− 5) + ... = (5 + 5 + 5 + ... + 10 terms) + (− 5) + 5 + (− 5) + ... + 10 terms
= 10 ×× 5 + 10 ×× (− 5)
= 50 − 50
= 0
(ii) When the number of terms is 25
5 + (− 5) + 5 + (− 5) + ... = (5 + 5 + 5 + ... + 12 terms) + (− 5) + 5 + (− 5) + ... + 13 terms
= 12 ×× 5 + 13 ×× (− 5)
= 60 − 65
= − (65 − 60)
= − 5


Question 19: If ∆ is an operation on integers such that for integers a and b, a ∆ b = a − b − (− 5). Find the values of

(i) (− 7) ∆ 3                  
(ii) (− 9) ∆ (− 4)                      
(iii) 2 ∆ 5                        
(iv) 4 ∆ (− 5) 

ANSWER:(i)

∵ a ∆ b = a − b − (− 5)

∴ (− 7) ∆ 3 = (− 7) − 3 − (− 5)

= − 7 − 3 + 5

= − (7 + 3) + 5

= − 10 + 5

= − (10 − 5)

= − 5


(ii)(− 9) ∆ (− 4) = (− 9) − (− 4) − (− 5)

= − 9 + 4 + 5

 = − 9  + 9

= 0


(iii) 2 ∆ 5 = 2 − 5 − (− 5)

= 2 − 5 + 5

= 2

(iv)

4 ∆ (− 5) = 4 − (− 5) − (− 5)

= 4 + 5 + 5

= 14


Question 20: Evaluate: − 36 − 40 + 43 − (− 29) + 18 − (− 74).

ANSWER: − 36 − 40 + 43 − (− 29) + 18 − (− 74)
= − 36 − 40 + 43 − (− 29) + 18 + 74
= − 36 − 40 + 43 − (− 29) + 92
= − 36 − 40 + 43 + 29 + 92
= − 36 − 40 + 43 + 121
= − 36 − 40 + 164
= − (36 + 40) + 164
= − 76 + 164
= 164 − 76
= 88


Question 21: The largest negative integer is ...............

ANSWER: The numbers ... − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5, ... form the set of integers.
Thus, the largest negative integer is − 1.


Question 22: The smallest positive integer is .................

ANSWER: The collection ... − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, ... forms the set of integers.
Thus, the smallest positive integer is 1.


Question 23: (− 22) + 21 + (− 22) + 21 + ... + 20 terms is equal to .............

ANSWER: ∵ (− 22) + 21 = − (22 − 21) = − 1
∴  (− 22) + 21 + (− 22) + 21 + ... + 20 terms = (− 1) + (− 1) + (− 1) + ... + 10 terms
 = 10 ×× (− 1)
= − 10


Question 24: (− 3) (− 4) (12) (− 1) = ............

ANSWER: (− 3) (− 4) (12) (− 1) = (− 3) (− 4) (− 12)                       [ ∵ (12) (− 1) = (− 12)]
= (− 3) (48)             [∵ (− 4) (− 12) = 48]
= − (3 ×× 48)
= − 144
Hence, (− 3) (− 4) (12) (− 1) = − 144.


Question 25: (− 1) (− 1) (− 1) (− 1) (− 1) = ...............

ANSWER: Here, − 1 is multiplied 5 times and since, 5 is an odd integer, therefore
(− 1) (− 1) (− 1) (− 1) (− 1) = − 1

The document Page No.5.21, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics is a part of the Class 6 Course RD Sharma Solutions for Class 6 Mathematics.
All you need of Class 6 at this link: Class 6
99 docs

FAQs on Page No.5.21, Negative Numbers And Integers, Class 6, Maths RD Sharma Solutions - RD Sharma Solutions for Class 6 Mathematics

1. What are negative numbers and integers?
Ans. Negative numbers are numbers less than zero, while integers are whole numbers, including both positive and negative numbers.
2. How do negative numbers and integers appear on a number line?
Ans. Negative numbers appear to the left of zero on a number line, while positive numbers appear to the right. Zero is considered neither positive nor negative and is located at the center of the number line.
3. What are some examples of negative numbers and integers?
Ans. Examples of negative numbers include -5, -10, and -15, while examples of integers include -3, 0, and 5.
4. How do we perform addition and subtraction with negative numbers and integers?
Ans. When adding or subtracting negative numbers or integers, we follow the rules of signed numbers. Adding a negative number is equivalent to subtracting its absolute value, while subtracting a negative number is equivalent to adding its absolute value.
5. Can negative numbers and integers be represented in real-life situations?
Ans. Yes, negative numbers and integers can be represented in real-life situations. For example, a temperature below zero can be represented by a negative number, and a gain or loss of money can be represented by positive or negative integers respectively.
Related Searches

Negative Numbers And Integers

,

Free

,

Class 6

,

Semester Notes

,

MCQs

,

Sample Paper

,

Important questions

,

past year papers

,

Exam

,

Viva Questions

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

Negative Numbers And Integers

,

ppt

,

Summary

,

pdf

,

shortcuts and tricks

,

Page No.5.21

,

Page No.5.21

,

Class 6

,

Objective type Questions

,

Previous Year Questions with Solutions

,

video lectures

,

Class 6

,

Negative Numbers And Integers

,

study material

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

mock tests for examination

,

Extra Questions

,

Maths RD Sharma Solutions | RD Sharma Solutions for Class 6 Mathematics

,

Page No.5.21

,

practice quizzes

;