Physics Exam  >  Physics Notes  >  Basic Physics for IIT JAM  >  Vector Spaces & Matrices

Vector Spaces & Matrices | Basic Physics for IIT JAM PDF Download

Vector Spaces:

Let {\displaystyle F}Vector Spaces & Matrices | Basic Physics for IIT JAM be field and let {\displaystyle V}Vector Spaces & Matrices | Basic Physics for IIT JAM be a set. {\displaystyle V}Vector Spaces & Matrices | Basic Physics for IIT JAM is said to be a Vector Space over {\displaystyle F}Vector Spaces & Matrices | Basic Physics for IIT JAM along with the binary operations of addition and scalar product if

{\displaystyle \forall \mathbf {A} ,\mathbf {B} ,\mathbf {C} \in V}Vector Spaces & Matrices | Basic Physics for IIT JAM
(i) {\displaystyle \mathbf {A} +\mathbf {B} =\mathbf {B} +\mathbf {A} }Vector Spaces & Matrices | Basic Physics for IIT JAM ...(Commutativity)
(ii) {\displaystyle \mathbf {A} +(\mathbf {B} +\mathbf {C} )=(\mathbf {A} +\mathbf {B} )+\mathbf {C} }Vector Spaces & Matrices | Basic Physics for IIT JAM ...(Associativity)
(iii) {\displaystyle \exists \mathbf {0} \in V}Vector Spaces & Matrices | Basic Physics for IIT JAM such that {\displaystyle \mathbf {A} +\mathbf {0} =\mathbf {A} }Vector Spaces & Matrices | Basic Physics for IIT JAM ...(Identity)
(iv){\displaystyle \exists (\mathbf {-A} )\in V}Vector Spaces & Matrices | Basic Physics for IIT JAM such that {\displaystyle \mathbf {A} +\mathbf {-A} =\mathbf {0} }Vector Spaces & Matrices | Basic Physics for IIT JAM ...(Inverse)
isplaystyleVector Spaces & Matrices | Basic Physics for IIT JAM {\displaystyle a,b\in F}Vector Spaces & Matrices | Basic Physics for IIT JAM
(v) {\displaystyle (a+b)\mathbf {A} =a\mathbf {A} +b\mathbf {A} }Vector Spaces & Matrices | Basic Physics for IIT JAM
(vi){\displaystyle a(\mathbf {A} +\mathbf {B} )=a\mathbf {A} +a\mathbf {B} }Vector Spaces & Matrices | Basic Physics for IIT JAM
(vii){\displaystyle a(b\mathbf {A} )=(ab)\mathbf {A} }Vector Spaces & Matrices | Basic Physics for IIT JAM
The elements of {\displaystyle V}Vector Spaces & Matrices | Basic Physics for IIT JAM are called vectors while the elements of {\displaystyle F}Vector Spaces & Matrices | Basic Physics for IIT JAM are called scalars. In most problems of Physics, the field {\displaystyle F}Vector Spaces & Matrices | Basic Physics for IIT JAM of scalars is either the set of real numbers {\displaystyle \mathbb {R} }Vector Spaces & Matrices | Basic Physics for IIT JAM or the set of complex numbers {\displaystyle \mathbb {C} }Vector Spaces & Matrices | Basic Physics for IIT JAM.
Examples of vector spaces:
(i) The set {\displaystyle \mathbb {R} ^{n}}Vector Spaces & Matrices | Basic Physics for IIT JAM over {\displaystyle \mathbb {R} }Vector Spaces & Matrices | Basic Physics for IIT JAM can be visualised as the space of ordinary vectors "arrows" of elementary Physics.
(ii) The set of all real polynomials {\displaystyle P(x)=a_{0}+a_{1}x+\ldots +a_{n}x^{n}}Vector Spaces & Matrices | Basic Physics for IIT JAM is a vector space over {\displaystyle \mathbb {R} }Vector Spaces & Matrices | Basic Physics for IIT JAM
(iii) Indeed, the set of all functions {\displaystyle f:[a,b]\to \mathbb {R} }Vector Spaces & Matrices | Basic Physics for IIT JAM is also a vector spaces over {\displaystyle \mathbb {R} }Vector Spaces & Matrices | Basic Physics for IIT JAM, with addition and scalar multiplication defined as is usual.
Although the idea of vectors as "arrows" works well in most examples of vector spaces and is useful in solving problems, the latter two examples were deliberately provided as cases where this intuition fails to work.

Basis:

A set E ⊂ V is said to be linearly independent if and only if
a1E+ a2E2 + ... + anEn =0 implies that a1 =a= ... =0, whenever E1, E2,....En ∈ E

A set E ⊂ V is said to cover V{\displaystyle V} if for every A ∈ V there exist e1,e2,... such that A = e1E1 + e2E+ ... (we leave the question of finiteness of the number of terms open at this point)

A set E ⊂ V is said to be a basis for V if B is linearly independent and if covers V

If a vector space has a finite basis with n{\displaystyle n} elements, the vetor space is said to be n-dimensional

As an example, we can consider the vector space R3{\displaystyle \mathbb {R} ^{3}} over reals. The vectors (1,0,0); (0,1,0); (0,0,1){\displaystyle (1,0,0);(0,1,0);(0,0,1)} form one of the several possible basis for R3{\displaystyle \mathbb {R} ^{3}}. These vectors are often denoted as {\displaystyle {\hat {i}},{\hat {j}},{\hat {k}}}Vector Spaces & Matrices | Basic Physics for IIT JAM or as {\displaystyle {\hat {x}},{\hat {y}},{\hat {z}}}Vector Spaces & Matrices | Basic Physics for IIT JAM

Theorem:

Let V{\displaystyle V} be a vector space and let B={b1,b2,...,bn}{\displaystyle B=\{\mathbf {b} _{1},\mathbf {b} _{2},\ldots ,\mathbf {b} _{n}\}} be a basis for V{\displaystyle V}. Then any subset of V{\displaystyle V} with n+1{\displaystyle n+1} elements is linearly dependent. 

Proof :
Let E ⊂ V with E = {u1,u2,..,un+1}
By definition of basis, there exist scalars a1i,a2i,...,ani such that ui = Vector Spaces & Matrices | Basic Physics for IIT JAM

{\displaystyle B\subset V}{\displaystyle e_{1},e_{2},\ldots }Hence we can write Vector Spaces & Matrices | Basic Physics for IIT JAMthat is 

Vector Spaces & Matrices | Basic Physics for IIT JAM






Which has a nontrivial solution for ci{\displaystyle c_{i}}. Hence E{\displaystyle E} is linearly dependent. 
If a vector space has a finite basis of n{\displaystyle n} elements, we say that the vector space is n-dimensional 
Inner Product:

An in-depth treatment of inner-product spaces will be provided in the chapter on Hilbert Spaces. Here we wish to provide an introduction to the inner product using a basis.
Let V{\displaystyle V} be a vector space over R{\displaystyle \mathbb {R} } and let B={b1,b2,...,bnbe a basis for V{\displaystyle V}Thus for every member u{\displaystyle \mathbf {u} } of V{\displaystyle V}we can write {\displaystyle \mathbf {u} =\displaystyle \sum _{i=1}^{n}b_{i}\mathbf {b} _{i}}Vector Spaces & Matrices | Basic Physics for IIT JAM{\displaystyle b_{ are called the components of {\displaystyle \mathbf {u} }with respect to the basis B{\displaystyle B}.

We define the inner product as a binary operation (.) : V x V → R {\displaystyle (\cdot ):V\times V\to \mathbb {R} } as {\displaystyle \mathbf {x} \cdot \mathbf {y} =\displaystyle \sum _{i}x_{i}y_{i}}Vector Spaces & Matrices | Basic Physics for IIT JAMwhere xi,yi{\displaystyle x_{i},y_{i}} are the components of x,y{\displaystyle \mathbf {x} ,\mathbf {y} } with respect to B

Note here that the inner product so defined is intrinsically dependent on the basis. Unless otherwise mentioned, we will assume the basis {\displaystyle {\hat {x}},{\hat {y}},{\hat {z}}}Vector Spaces & Matrices | Basic Physics for IIT JAM while dealing with inner product of ordinary "vectors". 

Linear Transformations:

Let U{\displaystyle U}, V{\displaystyle be vector spaces over F{\displaystyle F}A function T : U → V{\displaystyle T:U\to V} is said to be a Linear transformation if for all u1, u2{\displaystyle \mathbf {u} _{1},\mathbf {u} _{2}\in U ∈ U and c ∈ F{\displaystyle c\in F} if 
(i)T(u1 + u2) = T(u1) + T(u2)
(ii)T(cu1) = cT(u1)
Now let E = {e1,e2,...,em}{\displaystyle E=\{\mathbf {e} _{1},\mathbf {e} _{2},\ldots ,\mathbf {e} _{m}\}} and F = {f1,f2,...,fn}{\displaystyle F=\{\mathbf {f} _{1},\mathbf {f} _{2},\ldots ,\mathbf {f} _{n}\}} be bases for U,V{\displaystyle U,V} respectively. 
Let e′=T(e1).{\displaystyle \mathbf {e'} _{i}=T(\mathbf {e} _{i}) As F{\displaystyle F} is a basis, we can write {\displaystyle \mathbf {e'} _{i}=\sum _{j}a_{ij}\mathbf {f} _{j}}Vector Spaces & Matrices | Basic Physics for IIT JAM

Thus, by linearity we can say that if T(u) =vplaystyle T(\mathbf {u} )=\mathbf {v} }, we can write the components uj{\displaystyle v_{j}} of v{\displaystyle \mathbf {v} } in terms of those of u{\displaystyle \mathbf {u} } as {\displaystyle v_{j}=\sum _{i}u_{i}a_{ij}}Vector Spaces & Matrices | Basic Physics for IIT JAM 

The collection of coefficients aij{\displaystyle a_{ij}} is called a matrix, written as 

Vector Spaces & Matrices | Basic Physics for IIT JAM{\displaystyle T(c\mathbf {u} _{1})=cT(\mathbf {u} _{1})}and we can say that T{\displaystyle T} can be represented as a matrix A{\displaystyle \mathbf {A} } with respect to the bases E,F{\displaystyle E,F} 

Eigenvalue Problems:

Let V{\displaystyle V} be a vector space over reals and let T : V → V{\displaystyle T:V\to V} be a linear transformations. 

Equations of the type Tu = λu{\displaystyle T\mathbf {u} =\lambda \mathbf {u} }, to be solved for u ∈ V{\displaystyle \mathbf {u} \in V} and λ ∈ R{\displaystyle \lambda \in \mathbb {R} } are called eigenvalue problems. The solutions {\displaystyle \lambda }λ are called eigenvalues of T{\displaystyle T} while the corresponding u{\displaystyle \mathbf {u} } are called eigenvectors or eigenfunctions. (Here we take Tu = T(u){\displaystyle T\mathbf {u} =T(\mathbf {u} )} )

Matrices

Definition:

Let F                    F              {\displaystyle F}    be a field and let M = {1,2,...,m}              M        =        {        1        ,        2        ,        …        ,        m        }              {\displaystyle M=\{1,2,\ldots ,m\}}   , N = {1,2,...n}                    N        =        {        1        ,        2        ,        …        ,        n        }              {\displaystyle N=\{1,2,\ldots ,n\}}   . An n×m matrix is a function A :N x M → F                  A        :        N        ×        M        →        F              {\displaystyle A:N\times M\to F}   

We denote A(ij) = aij                    A        (        i        ,        j        )        =                  a                      i            j                                {\displaystyle A(i,j)=a_{ij}}   . Thus, the matrix A                     A              {\displaystyle A}   can be written as the array of numbers A = Vector Spaces & Matrices | Basic Physics for IIT JAM                    A        =                              (                                                                                a                                          11                                                                                                            a                                          12                                                                                                            a                                          13                                                                                        …                                                                      a                                          1                      m                                                                                                                                        a                                          21                                                                                                            a                                          22                                                                                                            a                                          23                                                                                        …                                                                      a                                          2                      m                                                                                                                                        a                                          31                                                                                                            a                                          32                                                                                                            a                                          33                                                                                        …                                                                      a                                          3                      m                                                                                                                    ⋮                                                  ⋮                                                  ⋮                                                  ⋱                                                  ⋮                                                                                                  a                                          n                      1                                                                                                            a                                          n                      2                                                                                                            a                                          n                      3                                                                                        …                                                                      a                                          n                      m                                                                                            )                                {\displaystyle A={\begin{pmatrix}a_{11}&a_{12}&a_{13}&\ldots &a_{1m}\\a_{21}&a_{22}&a_{23}&\ldots &a_{2m}\\a_{31}&a_{32}&a_{33}&\ldots &a_{3m}\\\vdots &\vdots &\vdots &\ddots &\vdots \\a_{n1}&a_{n2}&a_{n3}&\ldots &a_{nm}\\\end{pmatrix}}}   

Consider the set of all n×m matrices defined on a field F                    F              {\displaystyle F}   . Let us define scalar product cA                     c        A              {\displaystyle cA}   to be the matrix B                    B              {\displaystyle B}    whose elements are given by bij = caij                              b                      i            j                          =        c                  a                      i            j                                {\displaystyle b_{ij}=ca_{ij}}   . Also let addition of two matrices A + B                    A        +        B              {\displaystyle A+B}    be the matrix C                     C              {\displaystyle C}   whose elements are given by cij = aij + bij                               c                      i            j                          =                  a                      i            j                          +                  b                      i            j                                {\displaystyle c_{ij}=a_{ij}+b_{ij}}   
With these definitions, we can see that the set of all n×m matrices on F                    F              {\displaystyle F}    form a vector space over F
Linear Transformations:

Let U, V be vector spaces over the field F Consider the set of all linear transformations T : U → V .

Define addition of transformations as (T1+ T2 ) 1 1 = T1u - T2u and scalar product as (CT)u =c(Tu). Thus, the set of all linear transformations from U to V is a vector space. This space is denoted as L(U, V).

Observe that L(U, V) is an run dimensional vector space
Operations on Matrices:

Determinant:

The determinant of a matrix is defined iteratively (a determinant can be defined only if the matrix is square). If A is a matrix, its determinant is denoted as Vector Spaces & Matrices | Basic Physics for IIT JAM

We define , Vector Spaces & Matrices | Basic Physics for IIT JAM

For n=3                    n        =        3              {\displaystyle n=3}   , we define Vector Spaces & Matrices | Basic Physics for IIT JAM

 we thus define the determinant for any square matrix

Trace:

Let A                    A              {\displaystyle A}    be an n×n (square) matrix with elements                               a                      i            j                                {\displaystyle a_{ij}}   aij

The trace of A                    A              {\displaystyle A}    is defined as the sum of its diagonal elements, that is, 

Vector Spaces & Matrices | Basic Physics for IIT JAM

This is conventionally denoted as                     t        r        (        A        )        =                  ∑                      i            ,            j            =            1                                n                                    a                      i            j                                    δ                      i            j                                {\displaystyle tr(A)=\sum _{i,j=1}^{n}a_{ij}\delta _{ij}}    Vector Spaces & Matrices | Basic Physics for IIT JAMwhere Vector Spaces & Matrices | Basic Physics for IIT JAM called the Kronecker delta is a symbol which you will encounter constantly in this book. It is defined as 

Vector Spaces & Matrices | Basic Physics for IIT JAM

The Kronecker delta itself denotes the members of an n×n matrix called the n×n unit matrix, denoted as                     I              {\displaystyle I}    I

Transpose:

Let A                    A              {\displaystyle A}    be an m×n matrix, with elements                           a                      i            j                                {\displaystyle a_{ij}}   aij. The n×m matrix AT                              A                      T                                {\displaystyle A^{T}}    with elements                               a                      i            j                                T                                {\displaystyle a_{ij}^{T}}   Vector Spaces & Matrices | Basic Physics for IIT JAM is called the transpose of A                    A              {\displaystyle A}    when Vector Spaces & Matrices | Basic Physics for IIT JAM                              a                      i            j                                T                          =                  a                      j            i                                {\displaystyle a_{ij}^{T}=a_{ji}}    

Matrix Product:

Let A                    A              {\displaystyle A}    be an m×n matrix and let B                    B              {\displaystyle B}    be an n×p matrix.

We define the product of A,B                    A        ,        B              {\displaystyle A,B}    to be the m×p matrix C                    C              {\displaystyle C}    whose elements are given by 

                    F              {\displaystyle F}   

aystyle E\subset

Vector Spaces & Matrices | Basic Physics for IIT JAMand we write                     C        =        A        B              {\displaystyle C=AB}    C =AB

Properties:

(i) Product of matrices is not commutative. Indeed, for two matrices A,B                    A        ,        B              {\displaystyle A,B}   , the product BA                   B        A              {\displaystyle BA}    need not be well-defined even though AB                    A        B              {\displaystyle AB}    can be defined as above.
(ii) For any matrix n×n A we have AI = IA = A, where I is the n×n unit matrix.

The document Vector Spaces & Matrices | Basic Physics for IIT JAM is a part of the Physics Course Basic Physics for IIT JAM.
All you need of Physics at this link: Physics
210 videos|156 docs|94 tests

FAQs on Vector Spaces & Matrices - Basic Physics for IIT JAM

1. What is a vector space?
Ans. A vector space is a mathematical structure consisting of a set of objects called vectors, along with operations of addition and scalar multiplication. These operations satisfy certain properties, such as closure under addition and scalar multiplication, associativity, commutativity, and the existence of a zero vector and additive inverses.
2. How are matrices related to vector spaces?
Ans. Matrices can be used to represent linear transformations between vector spaces. A matrix is a rectangular array of numbers, where each number represents the coefficient of a vector in a linear combination. By applying matrix multiplication to vectors, we can perform transformations such as scaling, rotation, and reflection in a vector space.
3. What are the properties of a vector space?
Ans. The properties of a vector space include closure under addition and scalar multiplication, associativity, commutativity, the existence of a zero vector, the existence of additive inverses, and the distributive properties of scalar multiplication over addition.
4. How do vector spaces and matrices relate to physics?
Ans. In physics, vector spaces and matrices are used to describe and analyze physical quantities and transformations. For example, vectors can represent forces, velocities, and displacements, while matrices can represent the transformation of coordinates, the rotation of objects, or the evolution of physical systems over time.
5. Can vector spaces and matrices be applied to quantum mechanics?
Ans. Yes, vector spaces and matrices play a fundamental role in quantum mechanics. Quantum states are represented by vectors in a vector space called a Hilbert space, and operators that represent physical observables are represented by matrices. The principles of linear algebra, such as eigenvalues and eigenvectors, are used to analyze quantum systems and calculate probabilities of measurement outcomes.
210 videos|156 docs|94 tests
Download as PDF
Explore Courses for Physics exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Viva Questions

,

ppt

,

MCQs

,

Summary

,

mock tests for examination

,

Exam

,

Previous Year Questions with Solutions

,

Important questions

,

Sample Paper

,

study material

,

Extra Questions

,

Vector Spaces & Matrices | Basic Physics for IIT JAM

,

practice quizzes

,

pdf

,

Vector Spaces & Matrices | Basic Physics for IIT JAM

,

past year papers

,

shortcuts and tricks

,

Objective type Questions

,

video lectures

,

Vector Spaces & Matrices | Basic Physics for IIT JAM

,

Free

,

Semester Notes

;