Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Important Definitions & Formulas: Quadratic Equations

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10 PDF Download

The chapter on quadratic equations is essential because it equips us with a versatile problem-solving tool that finds applications in countless real-life situations.

This document provides Class 10 Maths Formulas for Pair of Quadratic Equations that can greatly assist you in excelling in your board exams and future competitive examinations.

Important Definitions

Standard Form of a Quadratic Equation

The standard/general form of a quadratic equation is ax2 + bx + c = 0 where,
a ≠ 0 and a, b, c are real numbers.
In this equation, the variable is ‘x’ and the degree of the equation is ‘2.’

Standard Form of Quadratic EquationStandard Form of Quadratic Equation

Zeroes & Roots of the Quadratic Equation

The values of x for which a quadratic equation is satisfied are called the roots/zeroes of the quadratic equation.
If α is a root of the quadratic equation ax2+bx+c=0, then aα2+bα+c=0.
A quadratic equation can have two distinct real roots, two equal roots or real roots may not exist.
Graphically, the roots of a quadratic equation are the points where the graph of the quadratic polynomial cuts the x-axis.

Example: Consider y = x2 - 8x +12

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10

The graph of the above quadratic equation is intersecting the x-axis at two points. So, the given quadratic equation has two distinct real roots.

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10The above quadratic equation is not intersecting the x-axis at any point. So the roots of the given quadratic equation are not real.
Also, consider y = x2 

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10

The curve of y = xis intersecting the x-axis at only one point. So, the above equation has real but repeated roots.

Solving Quadratic Equations with Factorisation Method

This method is also known as splitting the middle-term method.
Let's see with an appropriate example.

Solving Quadratic Equations By FactorisingSolving Quadratic Equations By Factorising

Example: Solve x2 + 3x - 4 = 0

Step 1: Compare it with the standard form of the quadratic equation ax2 + bx + c = 0
Here, a = 1, b = 3, c = -4. Let us multiply a and c = 1 x (-4) = -4. 

Step 2: Next, the middle term is split into two terms. We do it such that the product of the new coefficients equals the product of a and c.

We have to get 3 here. Consider (+4) and (-1) as the factors, whose multiplication is -4 and sum is 3. Hence, we write x2 + 3x – 4 = 0 as x2 + 4x – x – 4 = 0. 

Thus, we can factorise the terms as: (x + 4)(x - 1) = 0.
For any two quantities a and b, if a×b = 0, we must have either a = 0, b = 0 or a = b = 0.
Thus we have either (x + 4) = 0 or (x - 1) = 0 or both are = 0. This gives x + 4 = 0 or x - 1 = 0. Solving these equations for x gives x=-4 or x=1.

Question for Important Definitions & Formulas: Quadratic Equations
Try yourself:What is the factorisation of 6x2 + 11x - 10?
View Solution

Quadratic Formula

This is the most powerful method for solving quadratic equations. This method will work for every quadratic equation. This is the general quadratic equation formula. We define it as follows: If ax+ bx + c = 0 is a quadratic equation, then the value of x is given by the following formula:

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10

Just plug in the values of a, b and c, and do the calculations. The quantity in the square root is called the discriminant or D.
The roots of the quadratic equation ax2 + bx + c = 0, a ≠ 0 can be found by using the following formula if its discriminant (D = b2 - 4ac) is greater than or equal to zero.

Nature of Roots

Based on the value of the discriminant, D=(b− 4ac), the roots of a quadratic equation can be of three types.

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10Case 1: If D>0, the equation has two distinct real roots.
Case 2: If D=0, the equation has two equal real roots.
Case 3: If D<0, the equation has no real roots.

Word Problem Solved Examples

Example 1: A shopkeeper buys some books for 80. If he had bought 4 more books for the same amount, each book would have cost ₹1 less. Find the number of books he bought. 

Solution: Let the number of books he bought = x
Increased number of books he had bought = x + 4
Total amount = ₹80
According to the problem,
⇒ x(x + 4) = 320
⇒ x2 + 4x – 320 = 0
⇒ x2 + 20x – 16x – 320 = 0
⇒ x(x + 20) – 16(x + 20) = 0
⇒ (x + 20) (x – 16) = 0
⇒ x + 20 = 0 or x – 16 = 0
⇒ x = -20 … (neglected) or x = 16

∴ Number of books he bought = 16

Example 2: The sum of the areas of two squares is 400 cm2. If the difference of their perimeters is 16 cm, find the sides of the two squares.

Solution: Let the side of Large square = x cm
Let the side of small square = y cm
According to the Question,
x2 + y2 = 400… (i) …[∵ area of square = (side)2
4x – 4y = 16 …[∵ Perimeter of square = 4 sides
⇒ x – y = 4 … [Dividing both sides by 4
⇒ x = 4 + y …(ii)
Putting the value of x in equation (i),
(4 + y)2 + y2 = 400
⇒ y2 + 8y + 16 + y2 – 400 = 0
⇒ 2y2 + 8y – 384 = 0
⇒ y2 + 4y – 192 = 0 … [Dividing both sides by 2
⇒ y2 + 16y – 12y – 192 = 0
⇒ y(y + 16) – 12(y + 16) = 0
⇒ (y – 12)(y + 16) = 0
⇒ y – 12 = 0 or y + 16 = 0
⇒ y = 12 or y = -16 … [Neglecting negative value|
∴ Side of small square = y = 12 cm
and Side of large square = x = 4 + 12 = 16 cm

Example 3: The diagonal of a rectangular field is 16 metres more than the shorter side. If the longer side is 14 metres more than the shorter side, then find the lengths of the sides of the field.

Solution: Let the length of the shorter side be x m.
∴ length of diagonal = (x + 16) m
and length of longer side = (x + 14) m
Using Pythagoras theorem,
(l)2 + (b)2 = (h)2
∴ x2 + (x + 14)2 = (x + 16)2
⇒ x2 + x2 + 196 + 28x = x2 + 256 + 32x
⇒ x2 – 4x – 60 = 0
⇒ x2 – 10x + 6x – 60 = 0
⇒ x(x – 10) + 6(x – 10) = 0
⇒ (x – 10) (x + 6) = 0
⇒ x – 10 = 0 or x + 6 = 0
⇒ x = 10 or x = -6 (Reject)
⇒ x = 10 m …[As length cannot be negative
Length of shorter side = x = 10 m
Length of diagonal = (x + 16) m = 26 m
Length of longer side = (x + 14)m = 24m
Lengths of the sides are 10 m and 24 m.

Example 4: The sum of three numbers in A.P. is 12 and sum of their cubes is 288. Find the numbers.

Solution: Let three numbers in A.P. be a – d, a, a + d.
a – d + a + a + d = 12
⇒ 3a = 12 ⇒a = 4
(a – d)3 + (a)3 + (a + d)3 = 288
⇒ a3 – 3a2d + 3ad2 – d3 + a3 + a3 + 3a2d + 3ad2 + d3 = 288
⇒ 3a3 + 6ad2 = 288
⇒ 3a(a2 + 2d2) = 288
⇒ 3 × 4(42 + 2d2) = 288
⇒ (16 + 2d2) = 28812
⇒ 2d2 = 24 – 16 = 8
⇒ d2 = 4 ⇒ d = ± 2
When, a = 4, d = 2, numbers are –
a – d, a, a + d, i.e., 2, 4, 6
When, a = 4, d = -2, numbers are –
a – d, a, a + d, i.e., 6, 4, 2

Example 5: The perimeter of a right triangle is 60 cm. Its hypotenuse is 25 cm. Find the area of the triangle.

Solution: Perimeter of right ∆ = 60 cm …[Given
a + b + c = 60
a + b + 25 = 60
a + b = 60 – 25 = 35 …(I)
In rt. ∆ACB, AC2 + BC2 = AB2
b2 + a2 = (25)2 …[Pythagoras’ theorem|
a2 + b2 = 625 ….(ii)
From (i), a + b = 35
(a + b)2 = (35) … [Squaring both sides
a2 + b2 + 2ab = 1225
625 + 2ab = 1225 … [From (ii)
2ab = 1225 – 625 = 600 ⇒ ab = 300 … (iii)
Area of ∆ = 12 × base × corresponding altitude
= 12 × b × a = 12 (300) ..[From (iii)
= 150 cm2

Solving Quadratic Equation with Completing the Square Method (Deleted from NCERT Textbook)

We will learn this method by solving a quadratic equation by this method.

Example: Let us consider the equation, 2x2= 12x + 54

Step 1: In the standard form, we can write it as 2x2 – 12x – 54 = 0. 

Step 2: Next, let us get all the terms with x2 or x in them to one side of the equation: 2x2 – 12 = 54.
Step 3: In the next step, we have to make sure that the coefficient of x2 is 1. So dividing throughout by the coefficient of x2, we have: 2x2/2 – 12x/2 = 54/2 or x2 – 6x = 27.
Step 4: Next, we make the left-hand side a complete square by adding (6/2)2 = 9 i.e. (b/2)2 where ‘b’ is the new coefficient of ‘x’, to both sides as x2 – 6x + 9 = 27 + 9 or x2 – 2×3×x + 32 = 36. Now we can write it as a binomial square:

  • (x - 3)2 = 36;    Take the square root of both sides
  • x - 3 = ±6;      Which gives us these equations:
  • x = (3 + 6)    or   x = (3 - 6) or x = 9 or x = -3

This is known as the method of completing the squares.

The document Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10 is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
124 videos|457 docs|77 tests

Top Courses for Class 10

FAQs on Important Definitions & Formulas: Quadratic Equations - Mathematics (Maths) Class 10

1. What is the standard form of a quadratic equation?
Ans. The standard form of a quadratic equation is ax^2 + bx + c = 0, where a, b, and c are constants with 'a' not equal to 0.
2. How are the zeroes or roots of a quadratic equation determined?
Ans. The zeroes or roots of a quadratic equation are the values of x that make the equation equal to zero. They can be found by solving the equation using methods like factorisation, the quadratic formula, or completing the square.
3. How can quadratic equations be solved using the factorisation method?
Ans. To solve a quadratic equation using the factorisation method, the equation is first written in the form ax^2 + bx + c = 0. Then, the equation is factored into two binomial expressions, where the product of the two factors equals zero. By setting each factor to zero and solving for x, the roots of the equation can be found.
4. What is the quadratic formula and how is it used to solve quadratic equations?
Ans. The quadratic formula is x = (-b ± √(b^2 - 4ac)) / 2a. This formula is used to find the roots of a quadratic equation directly without having to factorise or complete the square.
5. What is the nature of roots of a quadratic equation and how can it be determined?
Ans. The nature of roots of a quadratic equation can be determined by looking at the discriminant (b^2 - 4ac) in the quadratic formula. If the discriminant is positive, the equation has two distinct real roots. If it is zero, the equation has one real root. If it is negative, the equation has two complex roots.
124 videos|457 docs|77 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

past year papers

,

Extra Questions

,

pdf

,

Summary

,

Objective type Questions

,

practice quizzes

,

Free

,

Previous Year Questions with Solutions

,

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10

,

Exam

,

MCQs

,

Viva Questions

,

mock tests for examination

,

Sample Paper

,

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10

,

shortcuts and tricks

,

video lectures

,

ppt

,

study material

,

Important Definitions & Formulas: Quadratic Equations | Mathematics (Maths) Class 10

,

Important questions

,

Semester Notes

;