NEET Exam  >  NEET Notes  >  Physics Class 12  >  NEET Previous Year Questions (2014-2024): Electric Charges & Fields

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12 PDF Download

2024

Q1: A thin spherical shell is charged by some source. The potential difference between the two points C and P (in V) shown in the figure is:            [2024]
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12(Take NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12 SI Units)
(a) 3 x 105
(b) 1 x 105
(c) 0.5 x 105
(d) Zero

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (d)
For uniformly charged spherical shell,
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2023

Q1:  If NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12 over a surface, then                                                                                                                                                                                    
(a) The number of flux lines entering the surface must be equal to the number of flux lines leaving it
(b) The magnitude of the electric field on the surface is constant
(c) All the charges must necessarily be inside the surface
(d) The electric field inside the surface is necessarily uniform

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (a)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
⇒ Net flux through the surface is zero.
⇒ Therefore, the number of flux lines entering the surface must be equal to the number of flux lines leaving it.

Q2: The net magnetic flux through any closed surface is 
(a) Zero
(b) Positive
(c) Infinity
(d) Negative

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (a)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
Magnetic monopole doesn't exist.
Hence net magnetic flux through any closed surface is zero.

Question for NEET Previous Year Questions (2014-2024): Electric Charges & Fields
Try yourself:Q3: An electric dipole is placed as shown in the figure.                                                                                                                                                                            
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
The electric potential at point P due to the dipole is (ε0 = permittivity of free space and NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

 
View Solution

2022

Q1: Two point charges –q and +q are placed at a distance of L, as shown in the figure 
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

The magnitude of electric field intensity at a distance R(R >>L) varies as:                                                                                                                                  
(a) 1/R3

(b) 1/R4
(c) 1/R6
(d) 1/R2

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (a)
For R >>L, arrangement is an electric dipole  
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2021

Q1: Polar molecules are the molecules:                                                                                                                                                                                                                
(a) acquire a dipole moment only when the magnetic field is absent.
(b) having a permanent electric dipole moment.
(c) having zero dipole moment.
(d) acquire a dipole moment only in the presence of an electric field due to displacement of charges.

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (b)
Polar molecules have centers of positive and negative charges separated by some distance, so they have permanent dipole moments.

Q2: A dipole is placed in an electric field as shown. In which direction will it move?                                                                                                           
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(a) towards the left as its potential energy will decrease.
(b) towards the right as its potential energy will increase.
(c) towards the left as its potential energy will increase.
(d) towards the right as its potential energy will decrease.

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (d)
E1| > |E2| as field lines are closer at charge +q, so the net force on the dipole acts towards the right side.
A system always moves to decrease its potential energy.
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2020

Q1: A short electric dipole has a dipole moment of 16×10-9 C m. The electric potential due to the dipole at a point at a distance of 0.6 m from the center of the dipole, situated on a line making an angle of 60° with the dipole axis is:                                                                                  
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(a)  400 V 
(b) Zero 
(c) 50 V 
(d) 200 V

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: D
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Question for NEET Previous Year Questions (2014-2024): Electric Charges & Fields
Try yourself:Q2: The acceleration of an electron due to the mutual attraction between the electron and a proton when they are 1.6 Å apart is, (me ≈ 9 × 10−31 kg, e = 1.6 × 10−19 C) NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
View Solution

Q3: A spherical conductor of radius 10 cm has a charge of 3.2 × 10−7 C distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere? NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

(a) 1.28 × 105 N/C
(b) 1.28 × 106 N/C
(c) 1.28 × 107 N/C
(d) 1.28 × 104 N/C

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (a)
Given, radius, r = 10 cm = 10 × 10 −2 m Charge, q = 3.2 × 10 −7 C Electric field, E = ?
Electric field at a point (x = 15 cm) from the centre of the sphere isNEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Hence, correct option is (a).

Q4: The electric field at a point on the equatorial plane at a distance r from the centre of a dipole having dipole moment r P is given by (r >> separation of two charges forming the dipole, ε 0 = permittivity of free space)
(a) NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

(b) NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

(c) NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

(d) NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (a)
Electric field due to electric dipole on equatorial plane at a distance r from the centre of dipole is given asNEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2019

Q1: A hollow metal sphere of radius R is uniformly charged. The electric field is due to the sphere at a distance r from the 
center.                                                                                                                                                                                                                                                                                           
(a) Increases as r increases for both r < R and r > R
(b) Zero as r increases for r < R, decreases as r increases for r > R
(c) Zero as r increases for r < R, increases as r increases for r > R
(d) 
Decreases as r increases for both r < R and r > R

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (b)
Charge Q will be distributed over the surface of a hollow metal sphere.
(i) For r < R (inside)
By Gauss law,
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
⇒ Ein = 0  (∵ qen = 0)
(ii) For r > R (outside)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Q2: Two parallel infinite line charges with linear charge densities +λ C/m and λl C/m are placed at a distance of 2R in free space. What is the electric field mid-way between the two line charges?                                                                                                                                                                 
(a) Zero
(b)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(c)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(d)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (c)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
Electric field due to line charge (1)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
Electric field due to line charge (2)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Q3: Two point charges A and B, having charges +Q and –Q respectively, are placed at a certain distance apart, and the force acting between them is F. If 25% charge of A is transferred to B, then the force between the charges becomes :                                                          
(a) F
(b) 9F/16
(c) 16F/9
(d) 4F/3

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (b)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
If 25% of the charge of A transferred to B then
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Question for NEET Previous Year Questions (2014-2024): Electric Charges & Fields
Try yourself:Q4:  A sphere encloses an electric dipole with charge ± 3 × 10−6 C. What is the total electric flux across the sphere?
View Solution

2018

Q1: An electron falls from rest through a vertical distance h in a uniform and vertically upward-directed electric field E. The direction of the electrical field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest through the same vertical distance h. The time fall of the electron, in comparison to the time fall of the proton is:                                                                                                  
(a) Smaller
(b) 5 times greater
(c) 10 times greater
(d) equal

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (a)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Q2: A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric fieldNEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12Due to the forceNEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12its velocity increases from 0 to 6 m/s in one-second duration. At that instant, the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively:  
(a) 2 m/s, 4 m/s
(b) 1 m/s, 3 m/s
(c) 1 m/s, 3.5 m/s
(d) 1.5 m/s, 3 m/s

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (b)
0 < t < 1s : velocity increases from 0 to 6 m/s
1 < t < 2s : velocity decreases from 6 to 0 m/s
but the car continues to move forward
2 < t < 3s : since field strength is same ⇒ same acceleration
∴ car's velocity increases
from 0 to –6 m/

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2017

Q1: Suppose the charge of a proton and an electron differ slightly. One of them is − e and the other is (e + ∆e). If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then ∆e is of the order [Given mass of hydrogen, mh = 1.67 × 10−27 kg] 
(a) 10−20 C
(b) 10−23 C
(c) 10 −37C
(d) 10 -47C

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (c)
Net charge on one H-atom q = − e + e + ∆e = ∆e Net electrostatic repulsive force between two H-atomsNEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12Similarly, net gravitational attractive force between two H-atomsNEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2016

Q1: Two identical charged spheres suspended from a common point by two mass-less strings of lengths ℓ are initially at a distance d  (d << ℓ) apart because of their mutual repulsion. The charges begin to leak from both spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then v varies as a function of the distance x between the spheres, as:                              
(a) v ∝ x-1
(b) v ∝ x1/2
(c) v ∝ x
(d) v ∝ x-1/2

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (d)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

Q2: An electric dipole is placed at an angle of 30° with an electric field of intensity 2 × 105 N C-1. It experiences a torque equal to 4 N m. Calculate the magnitude of charge on the dipole, if the dipole length is 2 cm.  
(a) 8 mC
(b) 6 mC
(c) 4 mC
(d) 2 mC

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (d)
E = 2 × 105 N/C
l = 2 cm
τ = 4 Nm
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 124 = pEsinθ
4 = p × 2 × 105 × sin30°
p = 4 × 10–5 cm
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

2015

Q1:  The electric field in a certain region is acting radially outward and is given by E = Ar. A charge contained in a sphere of radius = a centered at the origin of the field will be given by:                                                                                                                                                                                       
(a)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(b)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(c)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12
(d)NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12  View Answer

Ans: (d)
NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12


The document NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12 is a part of the NEET Course Physics Class 12.
All you need of NEET at this link: NEET
97 videos|336 docs|104 tests

Top Courses for NEET

FAQs on NEET Previous Year Questions (2014-2024): Electric Charges & Fields - Physics Class 12

1. What is the principle of superposition in electric charges?
Ans.The principle of superposition states that the total electric field created by multiple charges is equal to the vector sum of the electric fields produced by each charge individually. This means that if we have several point charges, we can calculate the net electric field at a point by considering the contribution from each charge separately and then adding them together as vectors.
2. How do electric field lines represent the strength and direction of electric fields?
Ans.Electric field lines are used to visualize electric fields. The density of the lines indicates the strength of the electric field: closer lines represent a stronger field, while lines that are farther apart indicate a weaker field. The direction of the field lines shows the direction in which a positive test charge would move, pointing away from positive charges and toward negative charges.
3. What is Coulomb's Law and how is it applied in electric charges?
Ans.Coulomb's Law describes the force between two point charges. It states that the magnitude of the electrostatic force \(F\) between two charges \(q_1\) and \(q_2\) is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance \(r\) between them. The law is mathematically expressed as \(F = k \frac{|q_1 \cdot q_2|}{r^2}\), where \(k\) is Coulomb's constant.
4. What are the properties of electric field lines?
Ans.Electric field lines have several key properties: they originate from positive charges and terminate on negative charges, they never cross each other, they are denser where the electric field is stronger, and they can be used to visualize the effect of multiple charges interacting together.
5. How does the concept of electric flux relate to Gauss's Law?
Ans.Electric flux is a measure of the electric field passing through a given area and is defined as the product of the electric field \(E\) and the area \(A\) through which it passes, considering the angle \(\theta\) between them: \(\Phi_E = E \cdot A \cdot \cos(\theta)\). Gauss's Law states that the total electric flux passing through a closed surface is equal to the charge enclosed by that surface divided by the permittivity of free space, mathematically expressed as \(\Phi_E = \frac{Q_{\text{enc}}}{\epsilon_0}\).
97 videos|336 docs|104 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

mock tests for examination

,

practice quizzes

,

past year papers

,

Extra Questions

,

Free

,

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

,

Sample Paper

,

MCQs

,

Viva Questions

,

pdf

,

video lectures

,

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

,

Exam

,

ppt

,

shortcuts and tricks

,

Important questions

,

Objective type Questions

,

Previous Year Questions with Solutions

,

NEET Previous Year Questions (2014-2024): Electric Charges & Fields | Physics Class 12

,

study material

,

Summary

,

Semester Notes

;