General Definition(s): 1. sin−1 x , cos−1 x , tan−1 x etc. denote angles or real numbers whose sine is x , whose cosine is x and whose tangent is x, provided that the answers given are numerically smallest available . These are also written as are sinx , are cosx etc . If there are two angles one positive & the other negative having same numerical value, then positive angle should be taken.
2. Principal Values And Domains Of Inverse Functions :
(i) y = sin−1 x where −1 ≤ x ≤ 1 ; and sin y = x.
(ii) y = cos−1 x where −1 ≤ x ≤ 1 ; 0 ≤ y ≤ π and cos y = x.
(iii) y = tan−1 x where x ∈ R ; and tan y = x.
(iv) y = cosec−1 x where x ≤ −1 or x ≥ 1; y ≠ 0 and cosec y = x
(v) y = sec−1 x where x ≤ −1 or x ≥ 1 ; 0 ≤ y ≤ π ; y ≠ π/2 and sec y = x.
(vi) y = cot−1 x where x ∈ R, 0 < y < π and cot y = x.
NOTE THAT : (a) 1st quadrant is common to all the inverse functions.
(b) 3rd quadrant is not used in inverse functions.
(c) 4th quadrant is used in the CLOCKWISE DIRECTION i.e. .
3. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS :
P−1
(i) sin (sin−1 x) = x, −1 ≤ x ≤ 1
(ii) cos (cos−1 x) = x, −1 ≤ x ≤ 1
(iii) tan (tan−1 x) = x, x ∈ R
(iv) sin−1 (sin x) = x,
(v) cos−1 (cos x) = x; 0 ≤ x ≤ π
(vi) tan−1 (tan x) = x ;
P−2
(i) cosec−1 x = sin−1(1/x) ; x ≤ −1, x ≥ 1
(ii) sec−1 x = cos−1 (1/x) ; x ≤ −1, x ≥ 1
(iii) cot−1 x = tan−1 (1/x) ; x > 0 = π + tan−1(1/x) ; x < 0
P−3
(i) sin−1 (−x) = − sin−1x, −1 ≤ x ≤ 1
(ii) tan−1 (−x) = − tan−1 x, x ∈ R
(iii) cos−1 (−x) = π − cos−1 x, −1 ≤ x ≤ 1
(iv) cot−1 (−x) = π − cot−1 x, x ∈ R
P−4
(i) sin−1 x + cos−1 x = (π/2) −1 ≤ x ≤ 1
(ii) tan−1 x + cot−1 x = (π/2) x ∈ R
(iii) cosec−1 x + sec−1 x = (π/2) |x| ≥ 1
P−5
tan−1 x + tan−1 y = tan−1 where x > 0, y > 0 & xy < 1
= π + tan−1 where x > 0, y > 0 & xy > 1
tan−1 x − tan−1y = tan−1 where x > 0, y > 0
P−6
(i) sin−1 x + sin−1 y = sin−1 where x ≥ 0, y ≥ 0 & (x2 + y2) ≤ 1
Note that : x2 + y2 ≤ 1 ⇒ 0 ≤ sin−1 x + sin−1 y ≤ π/2
(ii) sin−1 x + sin−1 y = π − sin−1 where x ≥ 0, y ≥ 0 & x2 + y2 > 1
Note that : x2 + y2 >1 ⇒ π/2 < sin−1 x + sin−1 y < π
(iii) sin–1x – sin–1y = 1 where x > 0, y > 0
(iv) cos−1 x + cos−1 y = cos−1 where x ≥ 0, y ≥ 0
P-7
If tan−1 x + tan−1 y + tan−1 z = tan−1 if, x > 0, y > 0, z > 0 & xy + yz + zx < 1
Note : (i) If tan−1 x + tan−1 y + tan−1 z = π then x + y + z = xyz
(ii) If tan−1 x + tan−1 y + tan−1 z = π/2 then xy + yz + zx = 1
P-8
2 tan−1 x = Note very carefully that :
REMEMBER THAT :
(i) sin−1 x + sin−1 y + sin−1 z = ⇒ x = y = z = 1
(ii) cos−1 x + cos−1 y + cos−1 z = 3π ⇒ x = y = z = −1
(iii) tan−1 1 + tan−1 2 + tan−1 3 = π and tan−1 1 + tan−1
INVERSE TRIGONOMETRIC FUNCTIONS (SOME USEFUL GRAPHS)
1. y = sin−1 x, |x| ≤ 1, y ∈
2. y = cos−1 x, |x| ≤ 1, y ∈ [0, π]
3. y = tan−1 x , x ∈ R,
4. y = cot−1 x, x ∈ R, y ∈ (0, π)
5. y = sec−1 x, |x| ≥ 1,
6. y = cosec−1 x, |x| ≥ 1,
7. (a) y = sin−1 (sin x), x ∈ R,
Periodic with period 2π aperiodic
(b) y = sin (sin−1 x), = x x ∈ [−1, 1], y ∈ [−1, 1] , y is
8. (a) y = cos−1(cos x), x ∈ R, y ∈ [0, π], = x periodic with period 2π
(b) y = cos (cos−1 x), = x
x ∈ [−1, 1], y ∈ [−1, 1], y is aperiodic
9. (a) y = tan (tan−1 x), x ∈ R, y ∈ R, y is aperiodic = x
(b) y = tan−1 (tan x), = x
10. (a) y = cot−1 (cot x), = x
x ∈ R − {n π}, y ∈ (0, π), periodic with π
(b) y = cot (cot−1 x), = x
x ∈ R, y ∈ R, y is aperiodic
11. (a) y = cosec−1 (cosec x), = x
(b) y = cosec (cosec−1 x), = x
|x| ≥ 1, |y| ≥ 1, y is aperiodic
12. (a) y = sec−1 (sec x), = x
y is periodic with period 2π ;
(b) y = sec (sec−1 x), = x
|x| ≥ 1 ; |y| ≥ 1], y is aperiodic
75 videos|238 docs|91 tests
|
1. What are inverse trigonometric functions? |
2. How do inverse trigonometric functions relate to trigonometric functions? |
3. What are the common inverse trigonometric functions? |
4. How are inverse trigonometric functions represented? |
5. What is the range of inverse trigonometric functions? |
|
Explore Courses for Commerce exam
|