JEE Exam  >  JEE Notes  >  Mathematics (Maths) Class 12  >  Relations and Functions: Assertions & Reason Type Questions

Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE PDF Download

Question 1: Assertion (A) The relation R on the set N×N , defined by (a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N is an equivalence relation.
Reason (R) Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive.
Options~ 

(a) Both A and R are correct; R is the correct explanation of A.
(b) Both A and R are correct; R is not the correct explanation of A.
(c) A is correct; R is incorrect.
(d) R is correct; A is incorrect.

Correct Answer is Option (a)
A relation between two sets is a collection of ordered pairs containing one object from each set. If the object x is from the first set and the object y is from the second set, then the objects are said to be related if the ordered pair (x, y) is in the relation.
A relation R is reflexive if each element is related itself, i.e. (a, a) ∈ R, where a is an element of the domain.
A relation R is symmetric in case if any one element is related to any other element, then the second element is related to the first, i.e. if (x, y) ∈ R then (y, x) ∈ R, where x and y are the elements of domain and range respectively.
A relation R is transitive in case if any one element is related to a second and that second element is related to a third, then the first element is related to the third, i.e. if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.
Here, the given relation is:
(a, b) R (c, d) ⇔ a+d = b+c
Since, we know that (a +d)= (a + d).
Therefore, (a+d, a+d) ∈ R.
So, R is reflexive.
Now, suppose that (a + d, b + c) ∈ R.
Then we can write:
 a+d=b+c
Or, b+c = a+d
So, (b+c, a+d) ∈ R.
This means that R is symmetric.
Now, let us take an ordered pair (a + d, b + c) ∈ R and (b + c, e+f) ∈ R.
We can write:
a+d=b+c..........(1)
And, b+c=e+f.............(2)
From equations (1) and (2), we can say that a+d = e+f.
So, (a + d, e + f) ∈ R.
This implies that R is transitive.
So, R is reflexive, symmetric as well as transitive.
We know that a relation which is symmetric, reflexive as well as transitive is an equivalence relation.
Therefore, the assertion is correct and reason is the correct explanation.
Hence, option (a) is the correct answer.


Question 2: Assertion (A) : f(x) = 1+x2 is a one to one faction from R+ → R,
Reason (R) : Every strictly monotonic function is a one to one function.
(a) Both A and R are true and R is the correct explanation of A,
(b) Both A and R are true but R is not the correct explanation of A,
(c) A is true but R is false,
(d) A is false but R is true.

Correct Answer is Option (a)
A monotonic function is a function between ordered sets that preserves or reverses the given order.
Given, f(x)=1+x2, domain is R+ and range is R
Now, for one to one function, we know, if f(x)=f(y) then x=y
∴  1 + x21 = 1 + x22
⇒ x21 = x22 1 is cancelled in both sides
Thus, no negative value is considered.
A strictly monotonic function is either entirely non-increasing or non-decreasing, i.e., every element in the range maps to only one element in the domain.
∴ f(x)  is strictly monotonic function and one-one function.
The correct option is (A)


Question 3: Assertion: The relation R given by R = {(1,3),(4,2),(2,4),(2,3),(3,1)} on a set A={1,2,3,4} is not symmetric.
Reason: For symmetric relation R = R−1.
(a) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
(b) Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
(c) Assertion is correct but Reason is incorrect
(d) Both Assertion and Reason are incorrect

Correct Answer is Option (a)

Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.

R = {(1, 3),(4, 2),(2, 4)(2, 3)(3, 1)} as (2, 3) ∈ R but (3, 2) ∉ R
⇒ is not symmetric.


Question 4: The function f : R → R is defined by f(x) = cos2x + sin4x for x ∈ R. Then the range of f(x)is
(a) (3/4, 1]|
(b) [3/4, 1)|
(c) [3/4, 1]|
(d) (3/4, 1)|

Correct Answer is Option (c)
y = f(x) = cos2x + sin4x = cos2x + sin2x(1 − cos2x) = cos2x + sin2x − sin2xcos2x) = 1 − sin2xcos2x = 1 −(1/4)sin22x |∴ 3/4 ≤ f(x) ≤ 1| (∴ 0 ≤ sin22x ≤ 1)| ∴ f(x) ∈ [3/4,1]|


Question 5: Directions : In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as.
Let W be the set of words in the English dictionary.
A relation R is defined on W as
R = {(x, y) ∈ W × W such that x and y have at least one letter in common}.

Assertion (A): R is reflexive. Reason (R): R is symmetric. 

(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false and R is True

Correct Answer is Option (b)
For any word x ∈ W
x and x have atleast one (all) letter in common
∴ (x, x) ∈ R, ∀ x ∈ W
∴ R is reflexive
Symmetric: Let (x, y) ∈ R, x, y ∈ W
⇒ x and y have atleast one letter in common
⇒ y and x have atleast one letter in common  
⇒ (y, x) ∈ R ∴ R is symmetric
Hence A is true, R is true; R is not a correct explanation for A.


Question 6: Let R be the relation in the set of integers Z given by R = {(a, b) : 2 divides a – b}. 
Assertion (A): R is a reflexive relation. 
Reason (R): A relation is said to be reflexive if xRx, ∀x ∈ Z.

(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false and R is True

Correct Answer is Option (a)
By definition, a relation in Z is said to be reflexive if xRx, ∀ x ∈ Z. So R is true.
a – a = 0 ⇒ 2 divides a – a ⇒ aRa.
Hence R is reflexive and A is true.
R is the correct explanation for A.


Question 7: Consider the set A = {1, 3, 5}.
Assertion (A): The number of reflexive relations on set A is 29.
Reason (R): A relation is said to be reflexive if xRx, ∀x ∈ A.

(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false and R is True

Correct Answer is Option (d)
By definition, a relation in A is said to be reflexive if xRx, ∀ x ∈ A. So R is true.
The number of reflexive relations on a set containing n elements is 2n2 – n.

Here n = 3.
The number of reflexive relations on a set A = 29–3 = 26.
Hence A is false.


Question 8: Consider the function f : R → R defined as f(x) = x3 
Assertion (A): f(x) is a one-one function.
Reason (R): f(x) is a one-one function if co-domain = range.

(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false and R is True

Correct Answer is Option (c)

f(x) is a one-one function if
f(x1) = f(x2) ⇒ x1 = x2.
Hence R is false.
Let f(x1) = f(x2) for some x1, x2 ∈ R
⇒ (x1)3 = (x2)3
⇒ x1 = x2
Hence f(x) is one-one.
Hence A is true.


Question 9: If A = {1, 2, 3}, B = {4, 5, 6, 7} and f = {(1, 4), (2, 5), (3, 6)} is a function from A to B.
Assertion (A): f(x) is a one-one function.
Reason (R): f(x) is an onto function.

(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false and R is True

Correct Answer is Option (c)

Given, A= {1, 2, 3}, B = {4, 5, 6, 7} and f : A → B is defined as f = {(1, 4), (2, 5), (3, 6)} i.e., f(1) = 4, f(2) = 5 and f(3) = 6.

It can be seen that the images of distinct elements of A under f are distinct. So, f is one-one.

So, A is true.
Range of f = {4, 5, 6}.
Co-domain = {4, 5, 6, 7}.
Since co-domain ≠ range, f(x) is not an onto function. Hence R is false.


Question 10: Consider the function f : R → R defined as Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE
Assertion (A): f(x) is not one-one.
Reason (R): f(x) is not onto.

(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is NOT the correct explanation of A
(c) A is true but R is false
(d) A is false and R is True

Correct Answer is Option (b) 
Given, f : R → R;
f(x) = x/(1+x2)
Taking x1 = 4, x2 = (1/4) ∈ R
f(x1) = f(4) = 4/17
f(x2) = f(1/4) = (4/17) (x1 ≠ x2)
∴ f is not one-one.
A is true.
Let y ∈ R (co-domain)
f(x) = y
⇒ (x/(1 + x2)) = y
⇒ y.(1 + x2) = x
⇒ yx2 + y – x = 0
Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE
since, x ∈ R,
∴ 1 – 4y2 ≥ 0
⇒ -(1/2) ≤ y ≤ (1/2)
So Range (f ) ∈ [-(1/2), (1/2)]
Range (f) ≠ R (Co-domain)
∴  f is not onto.
R is true.
R is not the correct explanation for A.

The document Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE is a part of the JEE Course Mathematics (Maths) Class 12.
All you need of JEE at this link: JEE
204 videos|288 docs|139 tests

Up next

FAQs on Relations and Functions: Assertions & Reason Type Questions - Mathematics (Maths) Class 12 - JEE

1. What is the difference between a relation and a function?
Ans. In mathematics, a relation is a set of ordered pairs, whereas a function is a special type of relation where each input has exactly one output. In other words, every element in the domain of a function is associated with exactly one element in the codomain, whereas in a relation, an element in the domain can be associated with multiple elements in the codomain.
2. How can we determine if a relation is a function?
Ans. To determine if a relation is a function, we need to check if each element in the domain is associated with exactly one element in the codomain. We can do this by examining the ordered pairs of the relation. If there are no repeated values in the domain and each element in the domain is paired with a unique element in the codomain, then the relation is a function.
3. What is the difference between the domain and the codomain of a function?
Ans. The domain of a function is the set of all possible input values for the function, whereas the codomain is the set of all possible output values. The domain is typically specified or implied when defining a function, while the codomain represents the range of values that the function can produce.
4. Can a function have the same input value but different output values?
Ans. No, a function cannot have the same input value but different output values. By definition, each input value in a function is associated with exactly one output value. If there are multiple output values for the same input value, it violates the criteria for a function.
5. How can we determine if a function is one-to-one or onto?
Ans. To determine if a function is one-to-one (injective), we need to check if each distinct element in the domain is associated with a distinct element in the codomain. In other words, no two different elements in the domain should have the same image in the codomain. To determine if a function is onto (surjective), we need to check if every element in the codomain has at least one preimage in the domain. In other words, every element in the codomain should be associated with at least one element in the domain. If a function satisfies both conditions, it is called a one-to-one correspondence or a bijective function.
204 videos|288 docs|139 tests
Download as PDF

Up next

Explore Courses for JEE exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

video lectures

,

pdf

,

practice quizzes

,

Extra Questions

,

Sample Paper

,

Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE

,

Objective type Questions

,

Viva Questions

,

MCQs

,

shortcuts and tricks

,

past year papers

,

Important questions

,

Free

,

Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE

,

Summary

,

ppt

,

Relations and Functions: Assertions & Reason Type Questions | Mathematics (Maths) Class 12 - JEE

,

Previous Year Questions with Solutions

,

study material

,

mock tests for examination

,

Exam

;