Class 8 Exam  >  Class 8 Notes  >  K’th Largest Element in an array

K’th Largest Element in an array - Class 8 PDF Download

k largest(or smallest) elements in an array


Question: Write an efficient program for printing k largest elements in an array. Elements in an array can be in any order.

For example, if the given array is [1, 23, 12, 9, 30, 2, 50] and you are asked for the largest 3 elements i.e., k = 3 then your program should print 50, 30, and 23.

Method 1 (Use Bubble k times)
Thanks to Shailendra for suggesting this approach.

  • Modify Bubble Sort to run the outer loop at most k times.  
  • Print the last k elements of the array obtained in step 1.

Time Complexity: O(n*k)
Like Bubble sort, other sorting algorithms like Selection Sort can also be modified to get the k largest elements.
Method 2 (Use temporary array)
K largest elements from arr[0..n-1]

  • Store the first k elements in a temporary array temp[0..k-1].
  • Find the smallest element in temp[], let the smallest element be min.
    (i) For each element x in arr[k] to arr[n-1]. O(n-k)
    If x is greater than the min then remove min from temp[] and insert x.
    (ii) Then, determine the new min from temp[]. O(k) 
  • Print final k elements of temp[]

Time Complexity: O((n-k)*k). If we want the output sorted then O((n-k)*k + k*log(k))
Thanks to nesamani1822 for suggesting this method.
Method 3(Use Sorting) 

  • Sort the elements in descending order in O(n*log(n))
  • Print the first k numbers of the sorted array O(k).

Following is the implementation of the above.  

C++ 

// C++ code for k largest elements in an array

#include <bits/stdc++.h>

using namespace std;

 

void kLargest(int arr[], int n, int k)

{

    // Sort the given array arr in reverse

    // order.

    sort(arr, arr + n, greater<int>());

 

    // Print the first kth largest elements

    for (int i = 0; i < k; i++)

        cout << arr[i] << " ";

}

 

// driver program

int main()

{

    int arr[] = { 1, 23, 12, 9, 30, 2, 50 };

    int n = sizeof(arr) / sizeof(arr[0]);

    int k = 3;

    kLargest(arr, n, k);

}

 

// This article is contributed by Chhavi

Java

// Java code for k largest elements in an array

import java.util.Arrays;

import java.util.Collections;

import java.util.ArrayList;

 

class GFG {

    public static void kLargest(Integer[] arr, int k)

    {

        // Sort the given array arr in reverse order

        // This method doesn't work with primitive data

        // types. So, instead of int, Integer type

        // array will be used

        Arrays.sort(arr, Collections.reverseOrder());

 

        // Print the first kth largest elements

        for (int i = 0; i < k; i++)

            System.out.print(arr[i] + " ");

    }

   

  //This code is contributed by Niraj Dubey

  public static ArrayList<Integer> kLargest(int[] arr, int k)

    {

        //Convert using stream

        Integer[] obj_array = Arrays.stream( arr ).boxed().toArray( Integer[] :: new);

        Arrays.sort(obj_array, Collections.reverseOrder());

        ArrayList<Integer> list = new ArrayList<>(k);

 

        for (int i = 0; i < k; i++)

            list.add(obj_array[i]);

     

        return list;

    }

 

    public static void main(String[] args)

    {

        Integer arr[] = new Integer[] { 1, 23, 12, 9,

                                        30, 2, 50 };

        int k = 3;

        kLargest(arr, k);

       

        //This code is contributed by Niraj Dubey

        //What if primitive datatype array is passed and wanted to return in ArrayList<Integer>

        int[] prim_array = { 1, 23, 12, 9, 30, 2, 50 };

          System.out.print(kLargest(prim_array, k));

    }

}

// This code is contributed by Kamal Rawal

Python

''' Python3 code for k largest elements in an array'''

 

def kLargest(arr, k):

    # Sort the given array arr in reverse

    # order.

    arr.sort(reverse = True)

    # Print the first kth largest elements

    for i in range(k):

        print (arr[i], end =" ")

 

# Driver program

arr = [1, 23, 12, 9, 30, 2, 50]

# n = len(arr)

k = 3

kLargest(arr, k)

 

# This code is contributed by shreyanshi_arun.

C#

// C# code for k largest elements in an array

using System;

 

class GFG {

    public static void kLargest(int[] arr, int k)

    {

        // Sort the given array arr in reverse order

        // This method doesn't work with primitive data

        // types. So, instead of int, Integer type

        // array will be used

        Array.Sort(arr);

        Array.Reverse(arr);

 

        // Print the first kth largest elements

        for (int i = 0; i < k; i++)

            Console.Write(arr[i] + " ");

    }

 

    // Driver code

    public static void Main(String[] args)

    {

        int[] arr = new int[] { 1, 23, 12, 9,

                                30, 2, 50 };

        int k = 3;

        kLargest(arr, k);

    }

}

 

// This code contributed by Rajput-Ji

PHP

<?php

// PHP code for k largest

// elements in an array

 

function kLargest(&$arr, $n, $k)

{

    // Sort the given array arr

    // in reverse order.

    rsort($arr);

 

    // Print the first kth

    // largest elements

    for ($i = 0; $i < $k; $i++)

        echo $arr[$i] . " ";

}

 

// Driver Code

$arr = array(1, 23, 12, 9,

                30, 2, 50);

$n = sizeof($arr);

$k = 3;

kLargest($arr, $n, $k);

 

// This code is contributed

// by ChitraNayal

?>

Javascript

<script>

 

// JavaScript code for k largest

// elements in an array

 

function kLargest(arr, n, k)

{

    // Sort the given array arr in reverse

    // order.

    arr.sort((a, b) => b - a);

 

    // Print the first kth largest elements

    for (let i = 0; i < k; i++)

        document.write(arr[i] + " ");

}

 

// driver program

    let arr = [ 1, 23, 12, 9, 30, 2, 50 ];

    let n = arr.length;

    let k = 3;

    kLargest(arr, n, k);

 

 

// This code is contributed by Manoj.

 

</script>

Output

50 30 23

Time complexity: O(n*log(n))
Method 4 (Use Max Heap)

  • Build a Max Heap tree in O(n) 
  • Use Extract Max k times to get k maximum elements from the Max Heap O(k*log(n))

Time complexity: O(n + k*log(n))  
Method 5(Use Order Statistics) 

  • Use an order statistic algorithm to find the kth largest element.
  • Use QuickSort Partition algorithm to partition around the kth largest number O(n).
  • Sort the k-1 elements (elements greater than the kth largest element) O(k*log(k)). This step is needed only if the sorted output is required.

Time complexity: O(n) if we don’t need the sorted output, otherwise O(n+k*log(k))
Method 6 (Use Min Heap)
This method is mainly an optimization of method 1. Instead of using temp[] array, use Min Heap.

  • Build a Min Heap MH of the first k elements (arr[0] to arr[k-1]) of the given array. O(k*log(k))
  • For each element, after the kth element (arr[k] to arr[n-1]), compare it with root of MH.  
    (i) If the element is greater than the root then make it root and call heapify for MH
    (ii) Else ignore it.
    // The step 2 is O((n-k)*log(k))
  • Finally, MH has k largest elements, and the root of the MH is the kth largest element.

Time Complexity: O(k*log(k) + (n-k)*log(k)) without sorted output. If sorted output is needed then O(k*log(k) + (n-k)*log(k) + k*log(k)) so overall it is O(k*log(k) + (n-k)*log(k))
All of the above methods can also be used to find the kth largest (or smallest) element.

C++

#include <iostream>

using namespace std;

 

// Swap function to interchange

// the value of variables x and y

int swap(int& x, int& y)

{

    int temp = x;

    x = y;

    y = temp;

}

 

// Min Heap Class

// arr holds reference to an integer

// array size indicate the number of

// elements in Min Heap

class MinHeap {

 

    int size;

    int* arr;

 

public:

    // Constructor to initialize the size and arr

    MinHeap(int size, int input[]);

 

    // Min Heapify function, that assumes that

    // 2*i+1 and 2*i+2 are min heap and fix the

    // heap property for i.

    void heapify(int i);

 

    // Build the min heap, by calling heapify

    // for all non-leaf nodes.

    void buildHeap();

};

 

// Constructor to initialize data

// members and creating mean heap

MinHeap::MinHeap(int size, int input[])

{

    // Initializing arr and size

 

    this->size = size;

    this->arr = input;

 

    // Building the Min Heap

    buildHeap();

}

 

// Min Heapify function, that assumes

// 2*i+1 and 2*i+2 are min heap and

// fix min heap property for i

 

void MinHeap::heapify(int i)

{

    // If Leaf Node, Simply return

    if (i >= size / 2)

        return;

 

    // variable to store the smallest element

    // index out of i, 2*i+1 and 2*i+2

    int smallest;

 

    // Index of left node

    int left = 2 * i + 1;

 

    // Index of right node

    int right = 2 * i + 2;

 

    // Select minimum from left node and

    // current node i, and store the minimum

    // index in smallest variable

    smallest = arr[left] < arr[i] ? left : i;

 

    // If right child exist, compare and

    // update the smallest variable

    if (right < size)

        smallest = arr[right] < arr[smallest]

                             ? right : smallest;

 

    // If Node i violates the min heap

    // property, swap  current node i with

    // smallest to fix the min-heap property

    // and recursively call heapify for node smallest.

    if (smallest != i) {

        swap(arr[i], arr[smallest]);

        heapify(smallest);

    }

}

 

// Build Min Heap

void MinHeap::buildHeap()

{

    // Calling Heapify for all non leaf nodes

    for (int i = size / 2 - 1; i >= 0; i--) {

        heapify(i);

    }

}

 

void FirstKelements(int arr[],int size,int k){

    // Creating Min Heap for given

    // array with only k elements

    MinHeap* m = new MinHeap(k, arr);

 

    // Loop For each element in array

    // after the kth element

    for (int i = k; i < size; i++) {

 

        // if current element is smaller

        // than minimum element, do nothing

        // and continue to next element

        if (arr[0] > arr[i])

            continue;

 

        // Otherwise Change minimum element to

        // current element, and call heapify to

        // restore the heap property

        else {

            arr[0] = arr[i];

            m->heapify(0);

        }

    }

    // Now min heap contains k maximum

    // elements, Iterate and print

    for (int i = 0; i < k; i++) {

        cout << arr[i] << " ";

    }

}

// Driver Program

int main()

{

 

    int arr[] = { 11, 3, 2, 1, 15, 5, 4,

                           45, 88, 96, 50, 45 };

 

    int size = sizeof(arr) / sizeof(arr[0]);

 

    // Size of Min Heap

    int k = 3;

 

    FirstKelements(arr,size,k);

 

    return 0;

}

// This code is contributed by Ankur Goel

Java

import java.io.*;

import java.util.*;

 

class GFG{

   

public static void FirstKelements(int arr[],

                                  int size,

                                  int k)

{

     

    // Creating Min Heap for given

    // array with only k elements

    // Create min heap with priority queue

    PriorityQueue<Integer> minHeap = new PriorityQueue<>();

    for(int i = 0; i < k; i++)

    {

        minHeap.add(arr[i]);

    }

     

    // Loop For each element in array

    // after the kth element

    for(int i = k; i < size; i++)

    {

         

        // If current element is smaller

        // than minimum ((top element of

        // the minHeap) element, do nothing

        // and continue to next element

        if (minHeap.peek() > arr[i])

            continue;

         

        // Otherwise Change minimum element

        // (top element of the minHeap) to

        // current element by polling out

        // the top element of the minHeap

        else

        {

            minHeap.poll();

            minHeap.add(arr[i]);

        }

    }

     

    // Now min heap contains k maximum

    // elements, Iterate and print

    Iterator iterator = minHeap.iterator();

     

    while (iterator.hasNext())

    {

        System.out.print(iterator.next() + " ");

    }

}

 

// Driver code

public static void main (String[] args)

{

    int arr[] = { 11, 3, 2, 1, 15, 5, 4,

                  45, 88, 96, 50, 45 };

     

    int size = arr.length;

     

    // Size of Min Heap

    int k = 3;

     

    FirstKelements(arr, size, k);

}

}

 

// This code is contributed by Vansh Sethi

Python3

def FirstKelements(arr,size,k):

     

    # Creating Min Heap for given

    # array with only k elements

    # Create min heap with priority queue

    minHeap = []

    for i in range(k):

        minHeap.append(arr[i])

     

    # Loop For each element in array

    # after the kth element

    for i in range(k, size):

        minHeap.sort()

         

        # If current element is smaller

        # than minimum ((top element of

        # the minHeap) element, do nothing

        # and continue to next element

        if (minHeap[0] > arr[i]):

            continue

             

        # Otherwise Change minimum element

        # (top element of the minHeap) to

        # current element by polling out

        # the top element of the minHeap

        else:

            minHeap.pop(0)

            minHeap.append(arr[i])

             

    # Now min heap contains k maximum

    # elements, Iterate and print  

    for i in minHeap:

        print(i, end = " ")

 

# Driver code

arr=[11, 3, 2, 1, 15, 5, 4,45, 88, 96, 50, 45]

size = len(arr)

 

# Size of Min Heap

k=3

FirstKelements(arr, size, k)

 

# This code is contributed by avanitrachhadiya2155

C#

using System;

using System.Collections.Generic;

public class GFG

{

   

public static void FirstKelements(int []arr,

                                  int size,

                                  int k)

{

     

    // Creating Min Heap for given

    // array with only k elements

    // Create min heap with priority queue

    List<int> minHeap = new List<int>();

    for(int i = 0; i < k; i++)

    {

        minHeap.Add(arr[i]);

    }

     

    // Loop For each element in array

    // after the kth element

    for(int i = k; i < size; i++)

    {

        minHeap.Sort();

       

        // If current element is smaller

        // than minimum ((top element of

        // the minHeap) element, do nothing

        // and continue to next element

        if (minHeap[0] > arr[i])

            continue;

         

        // Otherwise Change minimum element

        // (top element of the minHeap) to

        // current element by polling out

        // the top element of the minHeap

        else

        {

            minHeap.RemoveAt(0);

            minHeap.Add(arr[i]);

        }

    }

     

    // Now min heap contains k maximum

    // elements, Iterate and print  

    foreach (int i in minHeap)

    {

        Console.Write(i + " ");

    }

}

 

// Driver code

public static void Main(String[] args)

{

    int []arr = { 11, 3, 2, 1, 15, 5, 4,

                  45, 88, 96, 50, 45 };

    int size = arr.Length;

     

    // Size of Min Heap

    int k = 3;

    FirstKelements(arr, size, k);

}

}

 

// This code is contributed by aashish1995.

Javascript

<script>

    function FirstKelements(arr , size , k) {

 

        // Creating Min Heap for given

        // array with only k elements

        // Create min heap with priority queue

        var minHeap = [];

        for (var i = 0; i < k; i++) {

            minHeap.push(arr[i]);

        }

 

        // Loop For each element in array

        // after the kth element

        for (var i = k; i < size; i++) {

            minHeap.sort((a,b)=>a-b);

 

            // If current element is smaller

            // than minimum ((top element of

            // the minHeap) element, do nothing

            // and continue to next element

            if (minHeap[minHeap.length-3] > arr[i])

                continue;

 

            // Otherwise Change minimum element

            // (top element of the minHeap) to

            // current element by polling out

            // the top element of the minHeap

            else {

                minHeap.reverse();

                minHeap.pop();

                minHeap.reverse();

                minHeap.push(arr[i]);

            }

        }

 

        // Now min heap contains k maximum

        // elements, Iterate and print

        for (var iterator of minHeap) {

            document.write(iterator + " ");

        }

    }

 

    // Driver code

        var arr = [11, 3, 2, 1, 15, 5, 4,

                  45, 88, 96, 50, 45];

        var size = arr.length;

 

        // Size of Min Heap

        var k = 3;

        FirstKelements(arr, size, k);

 

// This code is contributed by gauravrajput1

</script>

Output

50 88 96

Method 7(Using Quick Sort partitioning algorithm):

  • Choose a pivot number.
  • if K is lesser than the pivot_Index then repeat the step.
  • if K == pivot_Index : Print the array (low to pivot to get K-smallest elements and (n-pivot_Index) to n for K-largest elements)
  • if  K > pivot_Index : Repeat the steps for right part.

We can improve on the standard quicksort algorithm by using the random() function. Instead of using the pivot element as the last element, we can randomly choose the pivot element. The worst-case time complexity of this version is O(n2) and the average time complexity is O(n).
Following is the implementation of the above algorithm:

C++

#include <bits/stdc++.h>

using namespace std;

 

//picks up last element between start and end

int findPivot(int a[], int start, int end)

{

     

    // Selecting the pivot element

    int pivot = a[end];

   

    // Initially partition-index will be

    // at starting

    int pIndex = start;

 

    for (int i = start; i < end; i++) {

       

        // If an element is lesser than pivot, swap it.

        if (a[i] <= pivot) {

            swap(a[i], a[pIndex]);

           

            // Incrementing pIndex for further

            // swapping.

            pIndex++;

        }

    }

   

    // Lastly swapping or the

    // correct position of pivot

    swap(a[pIndex], a[end]);

    return pIndex;

}

 

 

//THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

//Picks up random pivot element between start and end

int findRandomPivot(int arr[], int start, int end)

{

    int n = end - start + 1;

    // Selecting the random pivot index

    int pivotInd = random()%n;

      swap(arr[end],arr[start+pivotInd]);

      int pivot = arr[end];

      //initialising pivoting point to start index

    pivotInd = start;

    for (int i = start; i < end; i++) {

       

        // If an element is lesser than pivot, swap it.

        if (arr[i] <= pivot) {

            swap(arr[i], arr[pivotInd]);

           

            // Incrementing pivotIndex for further

            // swapping.

            pivotInd++;

        }

    }

   

    // Lastly swapping or the

    // correct position of pivot

    swap(arr[pivotInd], arr[end]);

    return pivotInd;

}

//THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

 

void SmallestLargest(int a[], int low, int high, int k,

                     int n)

{

    if (low == high)

        return;

    else {

        int pivotIndex = findRandomPivot(a, low, high);

 

        if (k == pivotIndex) {

            cout << k << " smallest elements are : ";

            for (int i = 0; i < pivotIndex; i++)

                cout << a[i] << "  ";

 

            cout << endl;

 

            cout << k << " largest elements are : ";

            for (int i = (n - pivotIndex); i < n; i++)

                cout << a[i] << "  ";

        }

 

        else if (k < pivotIndex)

            SmallestLargest(a, low, pivotIndex - 1, k, n);

 

        else if (k > pivotIndex)

            SmallestLargest(a, pivotIndex + 1, high, k, n);

    }

}

 

// Driver Code

int main()

{

    int a[] = { 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 };

    int n = sizeof(a) / sizeof(a[0]);

 

    int low = 0;

    int high = n - 1;

   

    // Lets assume k is 3

    int k = 3;

 

    // Function Call

    SmallestLargest(a, low, high, k, n);

 

    return 0;

}

Java

import java.util.*;

 

class GFG{

 

  //picks up last element between start and end

  static int findPivot(int a[], int start, int end)

  {

 

    // Selecting the pivot element

    int pivot = a[end];

 

    // Initially partition-index will be

    // at starting

    int pIndex = start;

 

    for (int i = start; i < end; i++) {

 

      // If an element is lesser than pivot, swap it.

      if (a[i] <= pivot) {

        int temp =a[i];

        a[i]= a[pIndex];

        a[pIndex]  = temp;

 

 

        // Incrementing pIndex for further

        // swapping.

        pIndex++;

      }

    }

 

    // Lastly swapping or the

    // correct position of pivot

    int temp = a[pIndex];

    a[pIndex] = a[end];

    a[end] = temp;

    return pIndex;

  }

 

 

  //THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

  //Picks up random pivot element between start and end

  static int findRandomPivot(int arr[], int start, int end)

  {

    int n = end - start + 1;

    // Selecting the random pivot index

    int pivotInd = (int) ((Math.random()*1000000)%n);

    int temp = arr[end];

    arr[end] = arr[start+pivotInd];

    arr[start+pivotInd] = temp;

    int pivot = arr[end];

    //initialising pivoting point to start index

    pivotInd = start;

    for (int i = start; i < end; i++) {

 

      // If an element is lesser than pivot, swap it.

      if (arr[i] <= pivot) {

        int temp1 = arr[i];

        arr[i]= arr[pivotInd];

        arr[pivotInd] = temp1;

 

        // Incrementing pivotIndex for further

        // swapping.

        pivotInd++;

      }

    }

 

    // Lastly swapping or the

    // correct position of pivot

    int tep = arr[pivotInd];

    arr[pivotInd] =  arr[end];

    arr[end] = tep;

    return pivotInd;

  }

  //THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

 

  static void SmallestLargest(int a[], int low, int high, int k,

                              int n)

  {

    if (low == high)

      return;

    else {

      int pivotIndex = findRandomPivot(a, low, high);

 

      if (k == pivotIndex) {

        System.out.print(k+ " smallest elements are : ");

        for (int i = 0; i < pivotIndex; i++)

          System.out.print(a[i]+ "  ");

 

        System.out.println();

 

        System.out.print(k+ " largest elements are : ");

        for (int i = (n - pivotIndex); i < n; i++)

          System.out.print(a[i]+ "  ");

      }

 

      else if (k < pivotIndex)

        SmallestLargest(a, low, pivotIndex - 1, k, n);

 

      else if (k > pivotIndex)

        SmallestLargest(a, pivotIndex + 1, high, k, n);

    }

  }

 

  // Driver Code

  public static void main(String[] args)

  {

    int a[] = { 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 };

    int n = a.length;

 

    int low = 0;

    int high = n - 1;

 

    // Lets assume k is 3

    int k = 3;

 

    // Function Call

    SmallestLargest(a, low, high, k, n);

  }

}

 

// This code is contributed by Rajput-Ji

Python3

# Python program to implement above approach

 

# picks up last element between start and end

import random

 

def findPivot(a, start, end):

  

    # Selecting the pivot element

    pivot = a[end]

 

    # Initially partition-index will be

    # at starting

    pIndex = start

 

    for i in range(start,end):

 

        # If an element is lesser than pivot, swap it.

        if (a[i] <= pivot):

            a[i],a[pIndex] = a[pIndex],a[i]

 

            # Incrementing pIndex for further

            # swapping.

            pIndex += 1

       

  

    # Lastly swapping or the

    # correct position of pivot

    a[end],a[pIndex] = a[pIndex],a[end]

    return pIndex

  

  

#THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

#Picks up random pivot element between start and end

def findRandomPivot(arr, start, end):

   

    n = end - start + 1

    # Selecting the random pivot index

    pivotInd =  (int((random.random()*1000000))%n)

    arr[end],arr[start+pivotInd] = arr[start+pivotInd],arr[end]

    pivot = arr[end]

     

    #initialising pivoting poto start index

    pivotInd = start

    for i in range(start,end):

 

        # If an element is lesser than pivot, swap it.

        if (arr[i] <= pivot):

            arr[i],arr[pivotInd] = arr[pivotInd],arr[i]

 

            # Incrementing pivotIndex for further

            # swapping.

            pivotInd += 1

         

 

    # Lastly swapping or the

    # correct position of pivot

    arr[pivotInd],arr[end] = arr[end],arr[pivotInd]

    return pivotInd

 

 

def SmallestLargest(a, low, high, k, n):

    if (low == high):

        return

    else:

        pivotIndex = findRandomPivot(a, low, high)

  

        if (k == pivotIndex):

            print(str(k)+ " smallest elements are :",end=" ")

            for i in range(pivotIndex):

                print(a[i],end = "  ")

  

            print()

  

            print(str(k)+ " largest elements are :",end=" ")

            for i in range(n - pivotIndex,n):

                print(a[i],end="  ")

  

        elif (k < pivotIndex):

            SmallestLargest(a, low, pivotIndex - 1, k, n)

  

        elif (k > pivotIndex):

            SmallestLargest(a, pivotIndex + 1, high, k, n)

     

# Driver code

a = [ 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 ]

n = len(a)

  

low = 0

high = n - 1

  

#  assume k is 3

k = 3

  

# Function Call

SmallestLargest(a, low, high, k, n)

 

# This code is contributed by shinjanpatra

C#

using System;

using System.Text;

 

public class GFG {

 

  // picks up last element between start and end

  static int findPivot(int []a, int start, int end) {

 

    // Selecting the pivot element

    int pivot = a[end];

 

    // Initially partition-index will be

    // at starting

    int pIndex = start;

 

    for (int i = start; i < end; i++) {

 

      // If an element is lesser than pivot, swap it.

      if (a[i] <= pivot) {

        int temp6 = a[i];

        a[i] = a[pIndex];

        a[pIndex] = temp6;

 

        // Incrementing pIndex for further

        // swapping.

        pIndex++;

      }

    }

 

    // Lastly swapping or the

    // correct position of pivot

    int temp = a[pIndex];

    a[pIndex] = a[end];

    a[end] = temp;

    return pIndex;

  }

 

  // THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

  // Picks up random pivot element between start and end

  static int findRandomPivot(int []arr, int start, int end) {

    int n = end - start + 1;

     

    // Selecting the random pivot index

    Random _random = new Random();

    var randomNumber = _random.Next(0, n); 

    int pivotInd = randomNumber;

    int temp = arr[end];

    arr[end] = arr[start + pivotInd];

    arr[start + pivotInd] = temp;

    int pivot = arr[end];

     

    // initialising pivoting point to start index

    pivotInd = start;

    for (int i = start; i < end; i++) {

 

      // If an element is lesser than pivot, swap it.

      if (arr[i] <= pivot) {

        int temp1 = arr[i];

        arr[i] = arr[pivotInd];

        arr[pivotInd] = temp1;

 

        // Incrementing pivotIndex for further

        // swapping.

        pivotInd++;

      }

    }

 

    // Lastly swapping or the

    // correct position of pivot

    int tep = arr[pivotInd];

    arr[pivotInd] = arr[end];

    arr[end] = tep;

    return pivotInd;

  }

 

  static void SmallestLargest(int []a, int low, int high, int k, int n) {

    if (low == high)

      return;

    else {

      int pivotIndex = findRandomPivot(a, low, high);

 

      if (k == pivotIndex) {

        Console.Write(k + " smallest elements are : ");

        for (int i = 0; i < pivotIndex; i++)

          Console.Write(a[i] + "  ");

 

        Console.WriteLine();

 

        Console.Write(k + " largest elements are : ");

        for (int i = (n - pivotIndex); i < n; i++)

          Console.Write(a[i] + "  ");

      }

 

      else if (k < pivotIndex)

        SmallestLargest(a, low, pivotIndex - 1, k, n);

 

      else if (k > pivotIndex)

        SmallestLargest(a, pivotIndex + 1, high, k, n);

    }

  }

 

  // Driver Code

  public static void Main(String[] args) {

    int []a = { 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 };

    int n = a.Length;

 

    int low = 0;

    int high = n - 1;

 

    // Lets assume k is 3

    int k = 3;

 

    // Function Call

    SmallestLargest(a, low, high, k, n);

  }

}

 

// This code is contributed by Rajput-Ji

Javascript

<script>

    // JavaScript code to implement the approach

 

  //picks up last element between start and end

  function findPivot( a, start, end)

  {

  

    // Selecting the pivot element

    let pivot = a[end];

  

    // Initially partition-index will be

    // at starting

    let pIndex = start;

  

    for (let i = start; i < end; i++) {

  

      // If an element is lesser than pivot, swap it.

      if (a[i] <= pivot) {

        let temp =a[i];

        a[i]= a[pIndex];

        a[pIndex]  = temp;

  

  

        // Incrementing pIndex for further

        // swapping.

        pIndex++;

      }

    }

  

    // Lastly swapping or the

    // correct position of pivot

    let temp = a[pIndex];

    a[pIndex] = a[end];

    a[end] = temp;

    return pIndex;

  }

  

  

  //THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

  //Picks up random pivot element between start and end

  function findRandomPivot(arr, start, end)

  {

    let n = end - start + 1;

    // Selecting the random pivot index

    let pivotInd =  (parseInt((Math.random()*1000000))%n);

    let temp = arr[end];

    arr[end] = arr[start+pivotInd];

    arr[start+pivotInd] = temp;

    let pivot = arr[end];

    //initialising pivoting point to start index

    pivotInd = start;

    for (let i = start; i < end; i++) {

  

      // If an element is lesser than pivot, swap it.

      if (arr[i] <= pivot) {

        let temp1 = arr[i];

        arr[i]= arr[pivotInd];

        arr[pivotInd] = temp1;

  

        // Incrementing pivotIndex for further

        // swapping.

        pivotInd++;

      }

    }

  

    // Lastly swapping or the

    // correct position of pivot

    let tep = arr[pivotInd];

    arr[pivotInd] =  arr[end];

    arr[end] = tep;

    return pivotInd;

  }

  //THIS PART OF CODE IS CONTRIBUTED BY - rjrachit

  

  function SmallestLargest( a,  low,  high, k,

                              n)

  {

    if (low == high)

      return;

    else {

      let pivotIndex = findRandomPivot(a, low, high);

  

      if (k == pivotIndex) {

        document.write(k+ " smallest elements are : ");

        for (let i = 0; i < pivotIndex; i++)

         document.write(a[i]+ "  ");

  

        document.write("<br/>");

  

        document.write(k+ " largest elements are : ");

        for (let i = (n - pivotIndex); i < n; i++)

          document.write(a[i]+ "  ");

      }

  

      else if (k < pivotIndex)

        SmallestLargest(a, low, pivotIndex - 1, k, n);

  

      else if (k > pivotIndex)

        SmallestLargest(a, pivotIndex + 1, high, k, n);

    }

  }

 

    // Driver code

 

    let a = [ 11, 3, 2, 1, 15, 5, 4, 45, 88, 96, 50, 45 ];

    let n = a.length;

  

    let low = 0;

    let high = n - 1;

  

    // Lets assume k is 3

    let k = 3;

  

    // Function Call

    SmallestLargest(a, low, high, k, n);

 

// This code is contributed by sanjoy_62.

</script>

Output

3 smallest elements are : 3  2  1  
3 largest elements are : 96  50  88

The document K’th Largest Element in an array - Class 8 is a part of Class 8 category.
All you need of Class 8 at this link: Class 8
Download as PDF

Top Courses for Class 8

Related Searches

Free

,

Important questions

,

Sample Paper

,

study material

,

K’th Largest Element in an array - Class 8

,

MCQs

,

K’th Largest Element in an array - Class 8

,

Previous Year Questions with Solutions

,

Semester Notes

,

Summary

,

Exam

,

practice quizzes

,

pdf

,

past year papers

,

Viva Questions

,

K’th Largest Element in an array - Class 8

,

Objective type Questions

,

mock tests for examination

,

Extra Questions

,

video lectures

,

ppt

,

shortcuts and tricks

;