घड़ी (Clock)
घड़ी एक ऐसा यन्त्र है, जो घण्टे, मिनट तथा सेकण्ड में समय के अन्तराल को व्यक्त करता है। घड़ी के मुख्यत: चार अवयय होते हैं, जो निम्न हैं
- डायल
- घण्टे की सूई
- सेकण्ड की सूई
- मिनट की सूई
1. डायल (Dial)
- डायल गोल,अण्डाकार, आयताकार या वर्गाकार होता है, जो 1 से 12 तक के अंकों को दर्शाता है। 6 की परिधि (या परिमाप) 12 बराबर भागों में बँटी होती है, जिन्हें घण्टों के स्थान कहते हैं। प्रत्येक घण्टे का न 5 बराबर भागों में बँटा होता है, जिन्हें मिनटों का स्थान कहते हैं।
2. घण्टे की सूई (Hour Hand)
- घण्टे की सूई, मिनट की सूई से छोटी व साधारणतः मोटी होती है। यह एक निश्चित समय को व्यक्त करती है। जैसे- यदि घण्टे की सूई अंक 9 पर हो तथा मिनट की सूई अंक 12 पर हो, तो यह इस बात को दर्शाती है कि घड़ी में अभी 9 बज रहे हैं।
3. मिनट की सूई (Minute Hand)
- मिनट की सूई, घण्टे की सूई से बड़ी तथा पतली होती है परन्तु सेकण्ड की सूई से छोटी व मोटी होती है। यह सूई घण्टे की सूई के साथ मिलकर समय की निश्चितता को व्यक्त करती है। जैसे- यदि घण्टे की सूई अंक 9 से थोड़ा-सा आगे ओर मिनट की सूई अंक 2 पर हो, तो यह इस बात को दर्शाती है कि घड़ी में अभी 9 बजकर 2*5 = 10 मिनट हो रहे हैं।
4. सेकण्ड की सूई (Second Hand)
- सेकण्ड की सूई, मिनट की सूई से बड़ी तथा पतली होती है। यह सूई घण्टे तथा मिनट की सूइयों के साथ मिलकर समय की निश्चितता को व्यक्त करती है। जैसे यदि घण्टे की सूई अंक 9 से थोड़ा सा आगे हो, मिनट की सूई अंक 2 पर और सेकण्ड की सूई अंक 5 पर हो, तो यह इस बात को दर्शाती है कि घड़ी में अभी 9x 1 = 9 बजकर 2x5 = 10 मिनट तथा 5x5 = 25 सेकण्ड हो रहे हैं।
1 घण्टे में घण्टे की सूई (छोटी सूई) 5 मिनट के स्थान पार करती है तथा मिनट की सूई (बड़ी सूई) 60 मिनट के स्थान को पार करती है। अतः यह कहा जा सकता है कि 1 घण्टे में मिनट की सूई घण्टे की सूई से 55 मिनट के स्थान से अधिक चलती है।
घड़ियों से सम्बन्धित महत्त्वपूर्ण तथ्य (Important Facts Related to Clocks)
- प्रत्येक 1 घण्टे में घड़ी की दोनों सूइयाँ एक बार सम्पाती होती है अर्थात् एक बार मिलती हैं।
- प्रत्येक 1 घण्टे में घड़ी की दोनों सूइयाँ दो बार समकोण (90°) बनाती हैं, इस स्थिति में ये दोनों परस्पर 15 मिनट की दूरी पर होती हैं।
- 12 घण्टे में दोनों सूइयाँ परस्पर 22 बार समकोण बनाती हैं।
- प्रत्येक 1 घण्टे में घड़ी की दोनों सूइयाँ एक बार परस्पर विपरीत हैं, इस स्थिति में ये दोनों परस्पर 30 मिनट की दूरी पर होती हैं। दिशा में होती हैं अर्थात् 180° का कोण बनाती
- 12 घण्टे में दोनों सूइयाँ 11 बार विपरीत दिशा में रहती है। इसी प्रकार 24 घण्टे में दोनों सूइयाँ बार एक-दूसरे के विपरीत होती हैं। 11 x 24 /12 = 22
- घण्टे की सूई एक चक्कर पूरा करने में 12 घण्टे लेती है जबकि मिनट की सूई 1 घण्टा लेती है अर्थात् मिनट # सूई घण्टे की सूई की तुलना में 12 गुना तेज चलती है।
- 1 मिनट में मिनट की सूई 6° आगे बढ़ती है, जबकि घण्टे की सूई 1/2°आगे बढ़ती है अर्थात् 1 मिनट में मिनट की सूई, घण्टे की सूई की अपेक्षा 5 1/2° आगे बढ़ती है।
- 1 घण्टे में मिनट की सूई द्वारा बनाया गया कोण = 360°
- 1 मिनट में मिनट की सूई द्वारा बनाया गया कोण = 6°
- इसी प्रकार, 1 घण्टे में घण्टे की सूई द्वारा बनाया गया कोण = 30° (6x5°)
- 1 मिनट में घण्टे की सूई द्वारा बनाया गया कोण = 30° 60° >= (1/2)⁰
मन्द एवं तेज घड़ियाँ (Slow and Fast Clocks)
जब घड़ी द्वारा बताया गया समय तथा वास्तविक समय समान रहता है, तब घड़ी न तो मन्द रहती है न ही तेज यदि वास्तविक समय के अनुसार 10 बजे हों और कोई घड़ी 10 बजकर 15 मिनट बताए, तो कहा जाएगा कि वह यही 15 मिनट तेज है। यदि उस समय कोई घडी 9 बजकर 50 मिनट बताए, तो कहा जाएगा कि वह घड़ी। 10 मिनट मन्द है।
उदाहरण 1: एक घड़ी प्रत्येक 3 घण्टे में 12 सेकण्ड आगे बढ़ जाती है। यदि उसे रविवार को अपराह्न 3 बजे से सही सेट कर चालू किया, तो मंगलवार को प्रातः 10 बजे क्या समय बताएगी?
(a) 10 बजकर 2 मिनट 50 सेकण्ड
(b) 10 बजकर 2 मिनट 54 सेकण्ड
(c) 10 बजकर 3 मिनट 2 सेकण्ड
(d) 10 बजकर 2 मिनट 52 सेकण्ड
उत्तर (d)
रविवार अपराह्न 3 बजे से मंगलवार प्रातः 10 बजे तक का समय 12 + 24+ 7 = 43 घण्टे
चूँकि घड़ी प्रत्येक 3 घण्टे में 12 सेकण्ड बढ़ती है। अतः 43 घण्टे में 12 X 43/ 3 = 172 सेकण्ड बढ़ेगी। अतः उसी घड़ी में मंगलवार प्रातः 10 बजे समय 10 बजकर 2 मिनट 52 सेकण्ड होगा।
कैलेण्डर (Calendar)
समय मापन की मुख्य तथा सबसे छोटी इकाई दिन है। एक दिन की समयावधि पृथ्वी की अपनी धुरी पर लगाए गए एक सम्पूर्ण चक्कर में व्यतीत किए गए समय के बराबर होती है एवं पृथ्वी जब सूर्य का एक चक्कर लगा लेती है, तो इसमें लगा समय एक सौर वर्ष के बराबर होता है। एक सौर वर्ष = 365 दिन, 5 घण्टा, 48 मिनट तथा 47.5 सेकण्ड के बराबर होता है, जो लगभग 365.2422 दिन के बराबर होता है। इसे संशोधित कर '365' दिन को ही वर्ष मान लिया गया, जिसे सामान्य वर्ष कहा जाता है। सामान्य वर्ष के इन 365 दिनों को ही कैलेण्डर में प्रदर्शित किया जाता है। इस प्रकार, कहा जा सकता है कि कैलेण्डर दिन, माह एवं वर्ष के बीच पारस्परिक सम्बन्धों को प्रदर्शित करने का एक प्रमुख साधन है।
साधारण वर्ष (Ordinary Year)
- वह वर्ष जिसमें 365 दिन (52 सप्ताह तथा 1 दिन) होते हैं, साधारण वर्ष कहलाता है।
अधिवर्ष या लीप वर्ष या लौंद का वर्ष (Leap Year)
- वह वर्ष जिसमें 366 दिन (52 सप्ताह तथा 2 दिन) होते हैं, लीप वर्ष कहलाता है। या वह वर्ष जो 4 से पूर्णतया विभाजित होता है, लीप वर्ष कहलाता है और वह शताब्दी वर्ष जो 400 से पूर्णतया विभाजित होता है, लीप वर्ष कहलाता है। जैसे-1992, 1996, 2000, आदि 4 से पूर्णतया विभाजित हैं। अतः ये लीप वर्ष हैं।
दिनों का चक्र (Cycle of Days)
- किसी भी सप्ताह के सातवें भाग को दिन कहते हैं। एक सप्ताह में सात दिन होते हैं-सोमवार, मंगलवार, बुधवार, बृहस्पतिवार, शुक्रवार, शनिवार तथा रविवार सात दिनों में सप्ताह का एक चक्र पूरा हो जाता है। इसके बाद दिन पुनः आवर्त्तित होने लगते हैं। किसी भी माह के 28वें, 30वें या 31वें भाग को या वर्ष के 365वें भाग को तिथि कहते है। इसका निर्धारण संख्याओं द्वारा किया जाता है।
विषम दिन (Odd Days)
- किसी निश्चित अवधि में पूर्ण सप्ताहों के अतिरिक्त दिनों को विषम दिन कहा जाता है। साधारण वर्ष में 1 विषम दिन व लीप वर्ष में 2 विषम दिन होते हैं।
|
Download the notes
Short Notes: Clock & Calendar (घड़ियाँ और कैलेण्डर)
|
Download as PDF
|
विषम दिनों की संख्या ज्ञात करना (To Find the Number of Odd Days)
- साधारण वर्ष में दिनों की संख्या = 365 = 52 ×7 + 1 = 52 सप्ताह + 1 दिन अर्थात् विषम दिनों की संख्या 1
- लीप वर्ष में दिनों की संख्या 366 = 52X7+ 2 = 52 सप्ताह + 2 दिन अर्थात् विषम दिनों की संख्या 2
महत्त्वपूर्ण तथ्य
- साधारण वर्ष में फरवरी में कोई विषम दिन नहीं होता है परन्तु लीप वर्ष में फरवरी में एक विषम दिन होता है।
- शताब्दी का पहला दिन सोमवार, मंगलवार, गुरुवार या शनिवार अवश्य होगा।
- शताब्दी का आखिरी दिन मंगलवार, गुरुवार या शनिवार नहीं होता है।
|
Take a Practice Test
Test yourself on topics from NEET exam
|
Practice Now
|
शताब्दी (100 वर्षों) में विषम दिनों की संख्या ज्ञात करना
100 वर्ष = 76 साधारण वर्ष + 24 लीप वर्ष = (76 x 52 सप्ताह + 76 दिन) + (24 x 52 सप्ताह + 24 x 2 दिन)
= {76 x 52 सप्ताह + (10 सप्ताह + 6 दिन)} + {24 x 52 सप्ताह + (6 सप्ताह + 6 दिन)}
= 5216 सप्ताह + 12 दिन = 5216 सप्ताह + (1 सप्ताह + 5 दिन) = 5217 सप्ताह +5 दिन
अर्थात् 100 वर्षों में विषम दिनों की संख्या = 5
(i) 200 वर्षों में विषम दिनों की संख्या = 2x5 दिन = 10 दिन = 1
सप्ताह +3 दिन = 3
(ii) 300 वर्षों में विषम दिनों की संख्या = 3 x 5 दिन = 15 दिन = 2 सप्ताह + 1 दिन = 1
(iii) 400 वर्षों में विषम दिनों की संख्या = 5 × 4 + 1 = 21 दिन = 3 सप्ताह = 0
(400वाँ वर्ष लीप वर्ष होगा, इसलिए 1 दिन अधिक लिया गया है) इसी प्रकार, 800, 1200, 1600 वर्षों में भी विषम दिनों की संख्या शून्य होगी।