Grade 10 Exam  >  Grade 10 Notes  >  Physics for Grade 10  >  Force-Extension Graphs

Force-Extension Graphs | Physics for Grade 10 PDF Download

Linear & Non-Linear Extension

  • Hooke’s law is the linear relationship between force and extension
    • This is represented by a straight line on a force-extension graph
  • Materials that do not obey Hooke's law, i.e they do not return to their original shape once the force has been removed, have a non-linear relationship between force and extension
    • This is represented by a curve on a force-extension graph
  • Any material beyond its limit of proportionality will have a non-linear relationship between force and extension
    Linear and non-linear regions of a force-extension graph
    Linear and non-linear regions of a force-extension graph

Calculating Spring Constant

  • The spring constant can be calculated by rearranging the Hooke's law equation for k:
    k = F/e
  • Where:
    • k = spring constant in newtons per metres (N/m)
    • F = force in newtons (N)
    • e = extension in metres (m)
  • This equation shows that the spring constant is equal to the force per unit extension needed to extend the spring, assuming that its limit of proportionality is not reached
  • The stiffer the spring, the greater the spring constant and vice versa
    • This means that more force is required per metre of extension compared to a less stiff spring
      A spring with a larger spring constant needs more force per unit extension (it is stiffer)A spring with a larger spring constant needs more force per unit extension (it is stiffer)

  • The spring constant is also used in the equation for elastic potential energy

Tip: Remember the unit for the spring constant is Newtons per metres (N/m). This is commonly forgotten in exam questions

Example: A mass of 0.6 kg is suspended from a spring, where it extends by 2 cm. Calculate the spring constant of the spring.

Step 1: List the known quantities
Mass, m = 0.6 kg
Extension, e = 2 cm

Step 2: Write down the relevant equation
k = F/e

Step 3: Calculate the force
The force on the spring is the weight of the mass
g is Earth's gravitational field strength (9.8 N/kg)
W = mg = 0.6 × 9.8 = 5.88 N

Step 4: Convert any units
The extension must be in metres
2 cm = 0.02 m

Step 5: Substitute values into the equation
Force-Extension Graphs | Physics for Grade 10

Interpreting Graphs of Force v Extension

  • The relationship between force and extension is shown on a force-extension graph
  • If the force-extension graph is a straight line, then the material obeys Hooke's law
    • Sometimes, this may only be a small region of the graph, up to the material's limit of proportionality
      The Hooke`s law region on a force-extension graph is where the graph is a straight line
      The Hooke's law region on a force-extension graph is where the graph is a straight line
  • The symbol Δ means the 'change in' a variables
    • For example, ΔF and Δe are the 'change in' force and extension respectively
    • This is the same as rise ÷ run for calculating the gradient
  • The '∝' symbol means 'proportional to'
    • i.e. F ∝ e means the 'the force is proportional to the extension'
      The spring constant is the gradient, or 1 ÷ gradient of a force-extension graph depending on which variable is on which axis 
      The spring constant is the gradient, or 1 ÷ gradient of a force-extension graph depending on which variable is on which axis 
  • If the force is on the y axis and the extension on the x axis, the spring constant is the gradient of the straight line (Hooke's law) region of the graph
    • If the graph has a steep straight line, this means the material has a large spring constant
    • If the graph has a shallow straight line, this means the material has a small spring constant
  • If the force is on the x axis and the extension on the y axis, the spring constant is 1 ÷ gradient of the straight line (Hooke's law) region of the graph
    • If the graph has a steep straight line, this means the material has a small spring constant
    • If the graph has a steep straight line, this means the material has a large spring constant

Tip:  Make sure to always check which variables are on which axes to determine which line has a larger or smaller spring constant, as well as the units for calculations

Question for Force-Extension Graphs
Try yourself:A student investigates the relationship between the force applied and extension for three springs K, L and M. The results are shown on the graph below:
Force-Extension Graphs | Physics for Grade 10

Which of the statements is correct?

View Solution

The document Force-Extension Graphs | Physics for Grade 10 is a part of the Grade 10 Course Physics for Grade 10.
All you need of Grade 10 at this link: Grade 10
Are you preparing for Grade 10 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Grade 10 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
124 videos|149 docs|37 tests

Up next

124 videos|149 docs|37 tests
Download as PDF

Up next

Explore Courses for Grade 10 exam
Related Searches

Semester Notes

,

MCQs

,

Extra Questions

,

Sample Paper

,

practice quizzes

,

Force-Extension Graphs | Physics for Grade 10

,

Previous Year Questions with Solutions

,

video lectures

,

Free

,

pdf

,

mock tests for examination

,

Important questions

,

past year papers

,

Summary

,

Force-Extension Graphs | Physics for Grade 10

,

study material

,

ppt

,

Viva Questions

,

Force-Extension Graphs | Physics for Grade 10

,

shortcuts and tricks

,

Exam

,

Objective type Questions

;