प्रश्न.1. एकसमान द्रव्यमान घनत्व के निम्नलिखित पिण्डों में प्रत्येक के द्रव्यमान केन्द्र की अवस्थिति लिखिए –
(a) गोला
(b) सिलिण्डर
(c) छल्ला तथा
(d) घन
क्या किसी पिण्ड का द्रव्यमान केन्द्र आवश्यक रूप से उस पिण्ड के भीतर स्थित होता है?
गोला, सिलिण्डर, वलय तथा घन का द्रव्यमान केन्द्र उनको ज्यामितीय केन्द्र होता है। नहीं, द्रव्यमान केन्द्र आवश्यक रूप से पिण्ड के भीतर स्थित नहीं होता है, अनेक पिण्डों; जैसे-वलय में, खोखले गोले में, खोखले सिलिण्डर में द्रव्यमान केन्द्र पिण्ड के बाहर होता है, जहाँ कोई पदार्थ नहीं होता है।
प्रश्न.2. HCl अणु में दो परमाणुओं के नाभिकों के बीच पृथकन लगभग 1.27 A (1Å = 10-10 m) है। इस अणु के द्रव्यमान केन्द्र की लगभग अवस्थिति ज्ञात कीजिए। यह ज्ञात है कि क्लोरीन का परमाणु हाइड्रोजन के परमाणु की तुलना में 35.5 गुना भारी होता है तथा किसी परमाणु का समस्त द्रव्यमान उसके नाभिक पर केन्द्रित होता है।
प्रश्न.3. कोई बच्चा किसी चिकने क्षैतिज फर्श पर एकसमान चाल υ से गतिमान किसी लम्बी ट्रॉली के एक सिरे पर बैठा है। यदि बच्चा खड़ा होकर ट्रॉली पर किसी भी प्रकार से दौड़ने लगता है, तब निकाय (ट्रॉली + बच्चा) के द्रव्यमान केन्द्र की चाल क्या है?
चूंकि ट्रॉली एक चिकने क्षैतिज फर्श पर गति कर रही है; अतः फर्श के चिकना होने के कारण निकाय पर क्षैतिज दिशा में कोई बाह्य बल कार्य नहीं करता है। जब बच्चा ट्रॉली पर दौड़ता है तो बच्चे द्वारा ट्रॉली पर
प्रश्न.4. दर्शाइए कि एवं के बीच बने त्रिभुज का क्षेत्रफल x के परिमाण का आधा है।
प्रश्न.5. दर्शाइए कि .(x ) का परिमाण तीन सदिशों , तथा से बने समान्तर षट्फलक के आयतन के बराबर है।
अत: ज्यामितीय दृष्टिकोण से •(x ) उस समान्तर षट्फलक का आयतन है, जिसकी तीन संलग्न भुजाएँ सदिशों , व से निरूपित होती हैं।
प्रश्न.6. एक कण, जिसके स्थिति सदिश के x, y, z – अक्षों के अनुदिश अवयव क्रमशः x,y,s हैं और रेखीय संवेग सदिश के अवयव px, py, ps हैं, कोणीय संवेग के अक्षों के अनुदिश अवयव ज्ञात कीजिए। दर्शाइए कि यदि कण केवल x-y तल में ही गतिमान हो तो। कोणीय संवेग का केवल z – अवयव ही होता है।
प्रश्न.7. दो कण जिनमें से प्रत्येक का द्रव्यमान m एवं चाल υ है, d दूरी पर समान्तर रेखाओं के अनुदिश, विपरीत दिशाओं में चल रहे हैं। दर्शाइए कि इस द्विकण निकाय का सदिश कोणीय संवेग समान रहता है, चाहे हम जिस बिन्दु के परितः कोणीय संवेग लें।
माना दो कण समान्तर रेखाओं AB तथा CD के अनुदिश परस्पर विपरीत दिशाओं में चाल से गति कर रहे हैं।
माना किसी क्षण इनकी स्थितियाँ क्रमश: बिन्दु P तथा Q हैं। हम एक बिन्दु O के परितः इस निकाय का कोणीय संवेग ज्ञात करना चाहते हैं।
इस प्रकारं द्विकर्ण निकाय का बिन्दु O के परितः कोणीय संवेग केवल m, υ तथा रेखाओं के बीच की दूरी d पर निर्भर करता है अर्थात् यह कोणीय संवेग बिन्दु O की स्थिति पर निर्भर नहीं करता है।
अतः इस द्विकण निकाय का सभी बिन्दुओं के परितः कोणीय संवेग नियत है।
प्रश्न.8. W भार की एक असंमांग छड़ को, उपेक्षणीय 3 भार वाली दो डोरियों से चित्र 7.4 में दर्शाए अनुसार लटकांकर विरामावस्था में रखा गया है। डोरियों द्वारा ऊध्र्वाधर से बने कोण क्रमशः 36.9° एवं 53.1° हैं। छड़ 2 m लम्बाई की है। छड़ के बाएँ सिरे से इसके गुरुत्व केन्द्र की दूरी d ज्ञात कीजिए।
माना छड़ AB का गुरुत्व केन्द्र G, उसके एक सिरे A से ‘d दूरी पर स्थित है। छड़ तीन बलों के अधीन सन्तुलन में है।
डोरियों में तनाव T1 तथा T2 डोरियों के अनुदिश ऊपर 3 की ओर कार्य करते हैं।
छड़ का भार W उसके गुरुत्व केन्द्र G पर ऊर्ध्वाधरत: नीचे की ओर कार्य करता है।
सन्तुलन की स्थिति में तीनों बलों की क्रिया-रेखाएँ एक ही बिन्दु O पर काटती हैं।
प्रश्न.9. एक कार का भार 1800 kg है। इसकी अगली और पिछली धुरियों के बीच की दूरी 1.8 m है। इसका गुरुत्व केन्द्र, अगली धुरी से 1.05 m पीछे है। समतल धरती द्वारा। इसके प्रत्येक अगले और पिछले पहियों पर लगने वाले बल की गणना कीजिए।
माना भूमि द्वारा प्रत्येक अगले पहिए पर आरोपित प्रतिक्रिया बल R1 व प्रत्येक पिछले पहिए पर आरोपित प्रतिक्रिया बले R2 है तब निकाय के ऊर्ध्वाधर सन्तुलन के लिए,
2R1 + 2R2 = W ……(1)जहाँ W कार का भार है जो उसके गुरुत्व केन्द्र G पर कार्यरत है।
G के सापेक्ष आघूर्ण लेने पर
2R1 × 1.05 = 2R2 × (1.8 – 1.05)
या
R1 × 1.05 = R2 × 0.75
प्रश्न.10. (a) किसी गोले को, इसके किसी व्यास के परितः जड़त्व – आघूर्ण 2MR2/5 है, जहाँ M गोले का द्रव्यमान एवं R इसकी त्रिज्या है। गोले पर खींची गई स्पर्श रेखा के परितः इसका जड़त्व-आघूर्ण ज्ञात कीजिए।
(b) M द्रव्यमान एवं R त्रिज्या वाली किसी डिस्क का इसके किसी व्यास के परित; “जड़त्व-आघूर्ण MR2 /4 है। डिस्क के लम्बवत् इसकी कोर से गुजरने वाली अक्ष के परितः
इस डिस्क (चकती) का जड़त्व-आघूर्ण ज्ञात कीजिए।
(a) दिया है: गोले का द्रव्यमान = M, त्रिज्या = R
रेखा AB गोले की एक स्पर्श रेखा है जिसके परितः गोले का जड़त्व-आघूर्ण ज्ञात करना है। स्पर्श रेखा AB के समान्तर, गोले का एक व्यास PQ खींचा।
प्रश्नानुसार, व्यास PQ (जो कि गोले के केन्द्र से जाता है) के परितः गोले का जड़त्व-आघूर्ण।
प्रश्न.11. समान द्रव्यमान और त्रिज्या के एक खोखले बेलन और एक ठोस गोले पर समान परिमाण के बल-आघूर्ण लगाए गए हैं। बेलन अपनी सामान्य सममित अक्ष के परितः घूम सकता है और गोला अपने केन्द्र से गुजरने वाली किसी अक्ष के परितः। एक दिए गए समय के बाद दोनों में कौन अधिक कोणीय चाल प्राप्त कर लेगा?
खोखले बेलन का अपनी सामान्य सममित अक्ष के परितः जड़त्व आघूर्ण
Ic = MR2 …..(1)
ठोस गोले का अपने केन्द्र से गुजरने वाली अक्ष के परित: जड़त्व आघूर्ण
Is = 2/5 MR2 …..(2)
प्रश्न.12. 20 kg द्रव्यमान का कोई ठोस सिलिण्डर अपने अक्ष के परितः 100 rad s-1 की कोणीय चाल से घूर्णन कर रहा है। सिलिण्डर की त्रिज्या 0.25 m है। सिलिण्डर के घूर्णन से सम्बद्ध गतिज ऊर्जा क्या है? सिलिण्डर का अपने अक्ष के परितः कोणीय संवेग का परिमाण क्या है?
ठोस सिलिण्डर का द्रव्यमान M = 20 किग्रा, सिलिण्डर की त्रिज्या R = 0.25 मी
∴ ठोस सिलिण्डर का अपनी अक्ष के परितः जड़त्व आघूर्ण,
प्रश्न.13. (a) कोई बच्चा किसी घूर्णिका (घूर्णीमंच) पर अपनी दोनों भुजाओं को बाहर की ओर फैलाकर खड़ा है। घूर्णिका को 40 rev/min की कोणीय चाल से घूर्णन कराया जाता है। यदि बच्चा अपने हाथों को वापस सिकोड़कर अपना जड़त्व-आघूर्ण अपने आरम्भिक जड़त्व-आघूर्ण 2/5 गुना कर लेता है तो इस स्थिति में उसकी कोणीय चाल क्या होगी? यह मानिए कि घूर्णिका की घूर्णन गति घर्षणरहित है।
(b) यह दर्शाइए कि बच्चे की घूर्णन की नयी गतिज ऊर्जा उसकी आरम्भिक घूर्णन की गतिज ऊर्जा से अधिक है। आप गतिज ऊर्जा में हुई इस वृद्धि की व्याख्या किस प्रकार करेंगे?
अब चूँकि अन्तिम जड़त्व आघूर्ण प्रारम्भिक जड़त्व आघूर्ण का 2/5 है, अत: अन्तिम घूर्णन गतिज ऊर्जा प्रारम्भिक मान की 5/2 गुनी हो जायेगी अर्थात् घूर्णन की नयी गतिज ऊर्जा प्रारम्भिक गतिज ऊर्जा से अधिक है।
इसका कारण यह है कि बच्चे द्वारा हाथों को वापस सिकोड़ने में व्यय रासायनिक ऊर्जा घूर्णन गतिज ऊर्जा में बदल जाती है।
प्रश्न.14. 3 kg द्रव्यमान तथा 40 cm त्रिज्या के किसी खोखले सिलिण्डर पर कोई नगण्य द्रव्यमान की रस्सी लपेटी गई है। यदि रस्सी को 30 N बल से खींचा जाए तो सिलिण्डर का कोणीय त्वरण क्या होगा। रस्सी का रैखिक त्वरण क्या है? यह मानिए कि इस प्रकरण में कोई फिसलन नहीं है?
यदि बेलन का द्रव्यमान M तथा त्रिज्या R हो तो यहाँ M = 3.0 किग्रा तथा R = 40 सेमी = 0.40 मीटर
अत: खोखले बेलन का अपनी अक्ष के परितः जड़त्व आघूर्ण –
प्रश्न.15. किसी घूर्णक (रोटर) की 200 rads-1 की एकसमान कोणीय चालक्नाए रखने के लिए एक इंजन द्वारा 180 N- m का बल-आघूर्ण प्रेषित करना आवश्यक होता है। इंजन के लिए आवश्यक शक्ति ज्ञात कीजिए। (नोट : घर्षण की अनुपस्थिति में एकसमान कोणीय वेग होने में यह समाविष्ट है कि बल-आघूर्ण शून्य है। व्यवहार में लगाए गए बल-आघूर्ण की। आवश्यकता घर्षणी बल-आघूर्ण को निरस्त करने के लिए होती है।) यह मानिए कि इंजन की दक्षता 100% है।
दिया है ω = 200 rad s-1 (नियत है), बल-आघूर्ण τ = 180 Nm
इंजन के लिए आवश्यक शक्ति
P = इंजन द्वारा घूर्णक को दी गई शक्ति [∵ η = 100%]
= τ ω = 180 N m × 200rad s-1
= 36 × 10 w = 36 kW
प्रश्न.16. R त्रिज्या वाली समांग डिस्क से R/2त्रिज्या का एक वृत्ताकार भाग काट कर निकाल दिया गया है। इस प्रकार बने वृत्ताकार सुराख का केन्द्र मूल डिस्क के केन्द्र से R/2 दूरी पर है। अवशिष्ट डिस्क के गुरुत्व केन्द्र की स्थिति ज्ञात कीजिए।
माना दिए हुए वृत्ताकार पटल का केन्द्र O और व्यास AB है।
OA = OB = R = त्रिज्या
इस पटल से, व्यास OB को एक वृत्त काट कर निकाल दिया जाता है।
स्पष्टत: दिए हुए पटल का गुरुत्व केन्द्र O पर तथा काटे गए वृत्त का गुरुत्व केन्द्र उसके केन्द्र G1 पर होगा, जबकि
OG1 = . OB = R
∵ वृत्तों के क्षेत्रफल उनकी त्रिज्याओं के वर्गों के अनुपात में होते हैं।
प्रश्न.17. एक मीटर छड़ के केन्द्र के नीचे क्षुर-धार रखने पर वह इस पर सन्तुलित हो जाती है जब दो सिक्के, जिनमें प्रत्येक का द्रव्यमान 5 g है, 12.0 cm के चिह्न पर एक के ऊपर एक रखे जाते हैं तो छड़ 45.0 cm चिह्न पर सन्तुलित हो जाती है। मीटर छड़ का द्रव्यमान क्या है?
माना मीटर छड़ का द्रव्यमान m g है।
प्रश्नानुसार, प्रथम स्थिति में छड़ अपने मध्य बिन्दु पर सन्तुलित होती है। इसका अर्थ यह है कि छड़ का गुरुत्व केन्द्र उसके मध्य बिन्दु पर है। दूसरी दशा में, छड़ पर दो बल लगे हैं,
(1) सिक्कों का भार W1 = 10g, बिन्दु C पर जहाँ AC = 12 cm
(2) छड़ का भार W2 = mg, मध्य बिन्दु G पर
छड़ D बिन्दु पर सन्तुलित होती है, जहाँ AD = 45 cm
यहाँ D आलम्ब है।
अतः आघूर्गों के सिद्धान्त से,
प्रश्न.18. एक ठोस गोला, भिन्न नति के दो आनत तलों पर एक ही ऊँचाई से लुढ़कने दिया जाता है।
(a) क्या वह दोनों बार समान चाल से तली में पहुँचेगा?
(b) क्या उसको एक तल पर लुढ़कने में दूसरे से अधिक समय लगेगा?
(c) यदि हाँ, तो किस पर और क्यों?
(a) θ झुकाव कोण तथा h ऊँचाई के आनत तल पर लुढ़कने वाले सममित पिण्ड का पृथ्वी तल पर पहुँचने पर वेग υ हो तो –
यहाँ पर स्पष्ट है कि गोले को तली पर पहुँचने का वेग आनत तल के झुकाव कोण 8 पर निर्भर नहीं करता, अतः गोला दोनों आनत तलों की तली पर समान चाल से पहुँचेगा।
(b) यदि आनत तल की लम्बाई s हो तथा गोले द्वारा तली तक पहुँचने में लिया गया समय t हो तो –
चूँकि लिया गया समय आनत तल के झुकाव कोण पर निर्भर करता है, अतः दोनों तलों पर लुढ़कने का समय भिन्न-भिन्न होगा।
(c) चूंकिt α 1/sin θ तथा 8 का मान बढ़ने से sin θ का मान बढ़ता है।
अतः θ के कम मान के लिए sin θ का मान कम होने के कारण t का मान अधिक होगा अर्थात् कम ढाल वाले तल पर लुढ़कने में लिया गया समय अधिक होगा।
प्रश्न.19. 2 m त्रिज्या के एक वलय (छल्ले) का भार 100 kg है। यह एक क्षैतिज फर्श पर इस प्रकार लोटनिक गति करता है कि इसके द्रव्यमान केन्द्र की चाल 20 cm/s हो। इसको रोकने के लिए कितना कार्य करना होगा?
छल्ले की त्रिज्या R =2 मी, इसका द्रव्यमान M = 100 किग्रा, द्रव्यमान केन्द्र की चाल υ = 2 सेमी/से = 0.20 मी/से।
चूँकि छल्ला लोटनिक गति करता आगे बढ़ रही है,
अतः इसकी कुल गतिज ऊर्जा K = स्थानान्तरीय गतिज ऊर्जा + घूर्णी गतिज ऊर्जा
प्रश्न.20. ऑक्सीजन अणु का द्रव्यमान 5.30 × 10-26 kg है तथा इसके केन्द्र से होकर गुजरने वाली और इसके दोनों परमाणुओं को मिलाने वाली रेखा के लम्बवत् अक्ष के परितः जड़त्व-आघूर्ण 1.94 × 10-46 kg-m2 है। मान लीजिए कि गैस के ऐसे अणु की औसत चाल 500 m/s है और इसके घूर्णन की गतिज ऊर्जा, स्थानान्तरण की गतिज ऊर्जा की दो-तिहाई है। अणु का औसत कोणीय वेग ज्ञात कीजिए।
ऑक्सीजन अणु का द्रव्यमान M = 5.30 × 10-26 किग्रा
इसका जड़त्व आघूर्ण I = 1.94 × 10-46 किग्रा-मी2
अणु की औसत चाल υ = 500 मी/से
प्रश्न.21. एक बेलन 30° कोण बनाते आनत तल पर लुढ़कता हुआ ऊपर चढ़ता है। आनत तल की तली में बेलन के द्रव्यमान केन्द्र की चाल 5 m/s है।
(a) आनत तल पर बेलन कितना ऊपर जाएगा?
(b) वापस तली तक लौट आने में इसे कितना समय लगेगा?
916 docs|393 tests
|
916 docs|393 tests
|
|
Explore Courses for UPSC exam
|