The Endomembrane system is a important component within eukaryotic cells, serving as a complex network of membranes and organelles that work together to perform various essential functions. It includes a range of organelles like the endoplasmic reticulum (ER), Golgi apparatus, lysosomes, and vacuoles. These organelles are interconnected by membranes and function together to carry out tasks such as protein synthesis, modification, and transport, lipid metabolism, and cellular waste management.
The Endomembrane System
The endomembrane system encompasses organelles such as the endoplasmic reticulum (ER), Golgi complex, lysosomes, and vacuoles. These organelles work together to perform specific tasks.
Note: The mitochondria, chloroplasts, and peroxisomes do not operate in coordination with the components of the endomembrane system. Therefore, they are not classified as part of this system.
Let's study these organelles in detail:
Electron microscopy studies conducted on eukaryotic cells reveal the presence of a network or reticulum made up of small tubular structures scattered throughout the cytoplasm. This network is known as the endoplasmic reticulum (ER).
Endoplasmic Reticulum
The ER often shows ribosomes attached to their outer surface. The endoplasmic reticulum bearing ribosomes on their surface is called rough endoplasmic reticulum (RER). In the absence of ribosomes they appear smooth and are called smooth endoplasmic reticulum (SER).
Camillo Golgi discovered reticular structures near the nucleus in 1898, and these structures were later named Golgi bodies after him. Golgi bodies consist of flat, disk-shaped sacs or cisternae, typically measuring 0.5µm to 1.0µm in diameter.
Golgi Apparatus
These cisternae are stacked parallel to each other and can vary in number within a Golgi complex. Golgi cisternae are arranged concentrically near the nucleus, featuring a distinct convex cis face and a concave trans face. Despite their differences, the cis and trans faces of the Golgi apparatus are interconnected.
Functions:
Lysosomes are vesicular structures enclosed by membranes, and they are created through the packaging process in the Golgi apparatus. These isolated lysosomal vesicles have been discovered to contain a wide range of hydrolytic enzymes (known as hydrolases), including lipases, proteases, and carbohydrases.
Lysosomes
Function: These enzymes are most effective when the environment is acidic. They have the capacity to break down carbohydrates, proteins, lipids, and nucleic acids.
Vacuoles are membrane-bound compartments present in the cytoplasm of cells. They contain water, sap, waste products, and other substances that aren't essential for the cell's functioning. A single membrane known as the tonoplast encloses the vacuole. In plant cells, vacuoles can occupy a significant portion, up to 90 percent, of the cell's volume.
Vacuole - Plant Cell
Function:
Mitochondria are semi autonomous having hollow sac like structures present in all eukaryotes except mature RBCs of mammals and sieve tubes of phloem. These are absent in all prokaryotes like bacteria and cyanobacteria. Mitochondria are organelles found in the cells that produce energy. They are not easily visible under the microscope and the number of mitochondria per cell varies depending on the cells' physiological activity.
Mitochondria
Functions of Mitochondria:
Plastids are present in all plant cells and in euglenoides, and they are easily visible under a microscope because of their substantial size. They contain distinct pigments that give plants specific colors. Plastids can be categorized into three types—chloroplasts, chromoplasts, and leucoplasts—based on the specific pigments they contain.
Types of Plastids
(a) Chloroplasts
Chloroplasts play a vital role in capturing light energy for the process of photosynthesis, utilizing pigments like chlorophyll and carotenoids. They are organelles enclosed by a double membrane. Notably, the inner membrane of chloroplasts has relatively low permeability.
Chloroplast
(b) Chromoplasts: Chromoplasts contain fat-soluble carotenoid pigments such as carotene, xanthophylls, and others. These pigments give the plant parts a yellow, orange or red colour.
(c) Leucoplasts: Leucoplasts are colourless plastids of varied shapes and sizes that store nutrients. There are three types of leucoplasts:
(i) Amyloplasts store carbohydrates (starch), e.g., potato
(ii) Elaioplasts store oils and fats
(iii) Aleuroplasts store proteins
Ribosomes were initially observed as dense particles under the electron microscope by George Palade in 1953. They consist of ribonucleic acid (RNA) and proteins and are not enclosed by any membrane. Ribosomes are tiny structures made up of ribonucleic acid (RNA) and proteins.
Ribosomes
Eukaryotic ribosomes have a sedimentation coefficient of 80S, while prokaryotic ribosomes have a sedimentation coefficient of 70S. Each ribosome is composed of two subunits: a larger subunit and a smaller subunit.
The cytoskeleton is a complex system of proteinaceous filamentous structures, including microtubules, microfilaments, and intermediate filaments, found within the cytoplasm.
Cytoskeleton
Collectively, these components are known as the cytoskeleton, and they serve various essential roles within the cell. These functions encompass providing mechanical support, enabling cell motility, and maintaining the cell's shape.
Cilia (singular: cilium) and flagella (singular: flagellum) are slender, hair-like projections extending from the cell membrane. Cilia are relatively small structures that function like oars, generating movement in either the cell or the surrounding fluid. Flagella, on the other hand, are longer and primarily responsible for propelling the cell. It's worth noting that prokaryotic bacteria also possess flagella, but their structure differs from that of eukaryotic flagella.
Cillia and Flagella
Under the electron microscopic study of cilia and flagella show that:
The centrosome is an organelle typically composed of two cylindrical structures known as centrioles, surrounded by a less structured pericentriolar material. Within the centrosome, both centrioles are oriented perpendicular to each other and exhibit an organization resembling a cartwheel.
Centrosome and Centrioles
The concept of the nucleus as a cellular organelle was first introduced by Robert Brown back in 1831. Later on, Flemming coined the term "chromatin" to describe the material within the nucleus that could be stained with basic dyes.
Nucleus
Chromosomes are thread-like structures found in the nucleus of eukaryotic cells, such as those in humans and many other organisms. They are made up of DNA, which contains the genetic information or genes that carry instructions for various cellular functions and traits.
Types of Chromosome
Microbodies are small, membrane-bound vesicles found in both plant and animal cells. These microbodies are notable for containing a variety of enzymes within their structure. These enzymes are involved in diverse cellular processes and metabolic reactions. Microbodies are essential for compartmentalizing specific enzymatic activities, allowing cells to carry out various biochemical reactions efficiently and independently within these specialized vesicles.