Building on the introduction to pericyclic reactions, we must understand the following results: [1,5] hydrogen shifts occur thermally while [1,3] hydrogen shifts happen photochemically. Labeling substrates with deuterium makes it possible to see the outcomes of these reactions which could otherwise often be invisible. Examples are shown below. As we have seen in previous sections, we need to use molecular orbital diagrams to explain these results.
Example: Predict the Cope rearrangement product of this reaction.
Ans: As mentioned above, this reaction is favorable because it relieves the strain in the cyclopropane ring. This common strategy is a useful way to generate a new 7-membered ring.
As seen in the previous problem, the Oxy-Cope rearrangement is an important synthetic tool. The product of this reaction is a 1,5-enone. This is the Oxy-Cope retron which will be important when approaching synthesis problems. One way to promote Oxy-Cope reactions is to deprotonate the starting alcohol with a hydride base. These reactions are referred to as oxy-anion accelerated Cope rearrangements.
The most amazing application of the Cope rearrangement is the molecule known as bullvalene. This molecule was designed and synthesized in the lab of William von Eggers Doering and published in 1963. If you play around with the molecule, you see that there are several Cope rearrangements that are initially possible. If you draw those products, you see that even more become apparent. The net result is that this is a fluxional molecule; it does not have a set structure at room temperature. In fact, when heated, its NMR spectra are a singlet at 4.2 in the proton NMR and one peak at 86 in the carbon spectrum. For an excellent article about the bullvalene origin story, check out Addison Ault's paper in the Journal of Chemical Education.
As mentioned above, the Claisen rearrangement is the conversion of an allyl vinyl ether into a 1,4-enone via a [3,3] sigmatropic rearrangement. The simplist Claisen rearrangement is picture below. The forward direction is favored because the product contains a carbonyl, so this is not a reversible reaction. The following two problems provide practice predicting products of Claisen rearrangements.
Example: Predict the product of the following Claisen rearrangement. Hint: Think carefully about the most stable structure for your product.
Ans: Draw the curved arrows for the allyl vinyl ether to generate the 1,4-enone. The tricky part of this problem is recognizing that this product is not the lowest energy molecule possible. A keto to enol tautomerization yields the final product. This is another example of the aromatic stability of benzene. We are used to converting enols to ketones. In this case the enol is more stable because of the aromaticity of benzene.
The above reaction is a very common strategy to make a C-C bond at the ortho position of a phenol. Keep this is mind when thinking about synthesis problems. (The starting material above is easily synthesized by treating phenol with sodium hydride and allyl bromide.)
Often the most challenging aspect of the Claisen rearrangement is synthesizing the starting material. Allyl vinyl ethers are difficult to obtain and chemists have developed several useful strategies to make them. How would you do it? The answer to Problem #4 above mentions starting with phenol, a vinyl ether, and reacting it with allyl bromide. However, vinyl ethers are very rare since they readily tautomerize to carbonyls unless they are part of an aromatic ring. One solution is to start with an acetal or ketal in place of the vinyl ether. An example of this strategy is shown below. What is the mechanism for this reaction? This variant of the Claisen rearrangement forms ketones or aldehydes (R=H). We will see below that other common Claisen strategies form esters, carboxylic acids, and amides.
A reaction analogous to the one we just discussed above is the Johnson-Claisen rearrangement that features the unusual orthoester functional group as one of its starting materials and produces ester products. An orthoester is the ester equivalent of a ketal. Using the exact same mechanism as in the answer to Problem #5 above (with R = OMe), we can understand the Johnson-Claisen rearrangement shown below. Thus, the retron for a Johson-Claisen rearrangement is a 1,4-enester.
The Ireland-Claisen rearrangement results in the formation of carboxylic acid products and proceeds via a silyl enol ether generated after forming an enolate. The reaction and mechanism are shown below. Continuing our trend of starting with allyl alcohol, we treat it with acetic anhydride to form an allyl ester. Combining that with LDA yields an enolate that reacts with trimethylsilyl chloride (TMSCl) on the oxygen of the enolate (this is standard reactivity for silyl electrophiles with enolates) to yield the key silyl enol ether. This undergoes the Ireland-Claisen rearrangement to yield a silyl ester that is easily converted to the desired carboxylic acid upon workup with aqueous acid. (This step is analogous to acidic deprotection of silyl ethers to yield alcohols.)
Example: What is the product of the following reaction?
Ans: This is an example of the Eschenmoser-Claisen rearrangement. Using an orthoamide in place of the orthoester in the Johnson-Claisen rearrangement results in the production of an unsaturated amide product by the same mechanism.
One final point about the Claisen rearrangement relates to the alkene geometry formed in the reaction. The example below highlights that trans alkenes are formed while cis alkenes are not. Why? This is another example of the importance of chair-like transition states. (We first saw this with the ene reaction in the cycloadditions chapter.) Putting the methyl substituent in the more stable equatorial position leads to the trans product. With the methyl in the less stable axial position, the cis product would form.
Example: What is the product of this Wittig rearrangement?
Ans: The phenyl is the electron withdrawing group in this molecule. So, draw the anion, then the rearrangement arrows, and finally add the proton to generate the product.
1. What are thermal and photochemical hydride shifts? |
2. How does molecular orbital theory explain sigmatropic rearrangements? |
3. What is the Cope rearrangement and its application? |
4. What is the Claisen rearrangement and its significance in alkene geometry? |
5. What are frequently asked questions about sigmatropic rearrangements? |
|
Explore Courses for UPSC exam
|