JEE Exam  >  JEE Notes  >  Chapter-wise Tests for JEE Main & Advanced  >  JEE Main Previous Year Questions (2023): Sets and Relations

JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced PDF Download

[JEE Mains MCQs]

Q1: Let A = {1 , 3 , 4 , 6 , 9} and B = {2 , 4 , 5 , 8 , 10}. Let R be a relation defined on A × B such that R = {((a1, b1) , (a, b2)) : a1 ≤ b2 and b1 ≤ a2}. Then the number of elements in the set R is:
(a) 180
(b) 26
(c) 52
(d) 160
Ans:
(d)
Given that the sets are A = {1, 3, 4, 6, 9} and B = {2, 4, 5, 8, 10}, for the relation R on the set A × B, we need to find the combinations of pairs that satisfy the conditions a1 ≤  b2 and b1 ≤  a2.
We find the number of combinations by considering the possible values for b2 for each a1 and the possible values for a2 for each b1:
For each a1 in A = {1, 3, 4, 6, 9} , the number of valid b2 values in B = {2, 4, 5, 8, 10} are:
- For a1 = 1 , there are 5 choices for b2.
- For a1 = 3 , there are 4 choices for b2.
- For a1 = 4 , there are 4 choices for b2.
- For a1 = 6 , there are 2 choices for b2.
-For a1 = 9 , there is 1 choice for b2.
This results in a total of 5 + 4 + 4 + 2 + 1 = 16 possible pairs (a1 , b2).  
Similarly, for each b1 in B, the number of valid a2 values in A are:
- For b1 = 2 , there are 4 choices for a2.
- For b1 = 4 , there are 3 choices for a2.
- For b1 = 5 , there are 2 choices for a2.
- For b1 = 8 , there is 1 choice for a2.
- For b1 = 10 , there are no choices for a2.
This results in a total of 4 + 3 + 2 + 1 + 0 = 10 possible pairs (b1 , a2).
Therefore, the total number of elements in the relation R , which satisfies the given conditions, is 16 × 10 = 160.
So, the correct answer is 160.

Q2: An organization awarded 48 medals in event 'A', 25 in event 'B' and 18 in event 'C'. If these medals went to total 60 men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?
(a) 10
(b) 15
(c) 21
(d) 9
Ans: 
(c)
We are given the number of medals for events A, B, and C which are 48, 25, and 18 respectively. We are also given that the total number of unique medal recipients across all events is 60 and that 5 people received a medal in all three events.
Using the Principle of Inclusion and Exclusion (PIE), we know that the total number of unique medal recipients can be calculated by adding the number of medal recipients in each event, subtracting the number of people who received a medal in any two events (to correct for double counting), and then adding back the number of people who received a medal in all three events (since we subtracted these people too much).
Mathematically, this can be represented as:
|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |B ∩ C| - |C ∩ A| + |A ∩ B ∩ C|
However, we want to find the total number of people who received a medal in any two events (which is represented by |A ∩ B| + |B ∩ C| + |C ∩ A| in the equation).
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & AdvancedTo find this, we rearrange the PIE formula to solve for |A ∩ B| + |B ∩ C| + |C ∩ A|:
|A ∩ B| + |B ∩ C| + |C ∩ A| = |A| + |B| + |C| + |A ∩ B ∩ C| - |A ∪ B ∪ C|
Substituting the given values, we find that the total number of people who received a medal in any two events is 48 + 25 + 18 + 5 - 60 = 36.
However, this includes people who received a medal in all three events, and we want to find the number of people who received a medal in exactly two events. Therefore, we need to subtract the people who received a medal in all three events from our calculated value.
Since each person who received a medal in all three events is counted three times in |A ∩ B| + |B ∩ C| + |C ∩ A| (once for each pair of events), we subtract three times the number of people who received a medal in all three events from our calculated value:
Number of people who received a medal in exactly two events = |A ∩ B| + |B ∩ C| + |C ∩ A| - 3 × |A ∩ B ∩ C|
Substituting the values we know, we find that the number of people who received a medal in exactly two events is 36 - 3 × 5 = 21.
Therefore, 21 people received a medal in exactly two of the three events.

Q3: Let A = {2, 3, 4} and B = {8, 9, 12}. Then the number of elements in the relation R = {((a1 , b1) , (a2 , b2)) ∈ (A × B , A × B) : a1 divides b2 and a2 divides b1} is :
(a) 18
(b) 24
(c) 36
(d) 12
Ans: 
(c)
Given sets:
A = 2,3,4
B = 8,9,12
We want to find the number of elements of the form ((a1, a1), (b2, b2)) such that:
a1 divides b2
a2 divides b1
For the first condition:
a1 divides b2
Given a1∈ A and b∈ B, we can list the pairs:
(a1, b2)∈(2, 8),(2, 12),(3, 9),(3, 12),(4, 8),(4, 12)
This gives 6 pairs.
For the second condition, the pairs are the same, because it's just the reversed relation. So:
a2 divides b1
Again has 6 valid pairs.
Now, for every pair from the first condition, we can have any pair from the second condition. This leads to: 6 × 6 = 36 relations.

Q4: Let A = {1, 2, 3, 4, 5, 6, 7}. Then the relation R = {(x, y) ∈ A × A : x + y = 7} is:
(a) reflexive but neither symmetric nor transitive
(b) transitive but neither symmetric nor reflexive
(c) symmetric but neither reflexive nor transitive
(d) an equivalence relation
Ans: 
(c)
Here, A = {1, 2, 3, 4, 5, 6, 7}
Since, x + y = 7 ⇒ y = 7 − x
So, R = {(1, 6)  (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
∵ (a, b) ∈ R ⇒ (b, a) ∈ R
∴ R is symmetric only.

Q5: Let P(S) denote the power set of S = {1, 2, 3, … ., 10}. Define the relations R1 and R2 on P(S) as AR1 B if (A∩Bc) ∪ (B ∩ Ac) = ∅ and AR2 B if A ∪ Bc = B ∪ Ac , ∀ A , B ∈ P (S). Then:
(a) only R2 is an equivalence relation
(b) both R1 and R2 are not equivalence relations
(c) both R1 and R2 are equivalence relations
(d) only R1 is an equivalence relation
Ans: 
(c)
S = {1, 2, 3, .... 10}
P(S) = power set of S
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
R1 is reflexive, symmetric
 For transitive
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
∴ A = C  equivalence.
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & AdvancedJEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
R2 → Reflexive, symmetric
For transitive:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & AdvancedJEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

Q6: Let R be a relation on JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced given by � = {(a, b) : 3a − 3b + 7 is an irrational number}. Then R is
(a) an equivalence relation
(b) reflexive and symmetric but not transitive
(c) reflexive and transitive but not symmetric
(d) reflexive but neither symmetric nor transitive
Ans: 
(d)
For reflexive:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
For transitive : 
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

Q7: Among the relations
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
(a) S is transitive but T is not
(b) both S and T are symmetric
(c) neither S nor T is transitive
(d) T is symmetric but S is not
Ans:
(d)
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

Q8: Let R be a relation onJEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced defined by (a , b) R (c , d) if and only if ab(b − c) = bc (a − d). Then R is
(a) symmetric and transitive but not reflexive
(b) reflexive and symmetric but not transitive
(c) transitive but neither reflexive nor symmetric
(d) symmetric but neither reflexive nor transitive
Ans:
(d)
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
Symmetric:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
Reflexive:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
Transitive:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

Q9: The minimum number of elements that must be added to the relation R = {(a, b) , (b, c)} on the set {a , b, c} so that it becomes symmetric and transitive is :
(a) 7
(b) 3
(c) 4
(d) 5
Ans: 
(a)
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
7 elements must be added

Q10: Let R be a relation defined on JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advancedas aRb if 2a+ 3b is a multiple of 5 , a , b ∈ JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced. Then R is
(a) an equivalence relation
(b) non reflexive
(c) symmetric but not transitive
(d) transitive but not symmetric
Ans:
(a)
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
∴ R is symmetric
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
∴ R is transitive
Hence, R is equivalence relation.
Option (1) is correct.

Q11: The relation R = {(a, b) : gcd (a, b) = 1, 2 a ≠ b , a , b ∈ JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced} is:
(a) reflexive but not symmetric
(b) transitive but not reflexive
(c) symmetric but not transitive
(d) neither symmetric nor transitive
Ans:
(d)
Given, (a, b) belongs to relation R if gcd (a , b) = 1 , 2a ≠ b.
Here gcd means greatest common divisor. gcd of two numbers is the largest number that divides both of them.
(1) For Reflexive,
In aRa , gcd (a , a) = a
∴ This relation is not reflexive.
(2) For Symmetric:
Take a = 2 , b = 1 ⇒ gcd (2, 1) = 1 Also 2a = 4 ≠ b
Now gcd (b , a) = 1 ⇒ gcd (1, 2) = 1
and 2b should not be equal to a
But here, 2b = 2 = a
⇒ R is not Symmetric
(3) For Transitive: Let a = 14 , b = 19 , c = 21
gcd (a, b) = 1 , 2a ≠ b
gcd (b , c) = 1 , 2b ≠ c
gcd (a , c) = 7 , 2a ≠ c
Hence not transitive
⇒ R is neither symmetric nor transitive.

[JEE Mains Numericals]

Q12: The number of elements in the set {n ∈JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced : 10 ≤ n ≤ 100 and 3n − 3 is a multiple of 7} is _____
Ans:
15
To determine the number of elements in the given set, we need to find how many natural numbers n between 10 and 100 (inclusive) satisfy the condition that 3n − 3 is a multiple of 7.
Recall that for any integers a and b, a is a multiple of b if there exists an integer k such that a = bk. So in our case, we need to find how many n satisfy the equation 3n − 3 = 7k for some integer k.
Notice that 3n − 3 = 3 (3n−1 − 1). We want this expression to be a multiple of 7. Let's explore a few powers of 3 modulo 7:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
We observe that 3n (mod 7) follows a cycle of length 6. So, 3n − 1 (mod 7) also follows the same cycle, but shifted:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
We want 3 (3n − 1 − 1) ≡ 0 (mod 7), which means that 3n − 1 − 1 ≡ 0 (mod 7). From the cycle above, we see that this is true when n − 1 is a multiple of 6, or equivalently, when n is one more than a multiple of 6.
Now let's find the multiples of 6 between 10 and 100:
12 , 18 , 24 , 30 , 36 , 42 , 48 , 54 , 60 , 66 , 72 , 78 , 84 , 90 , 96
Adding 1 to each of these values, we get the set of natural numbers n that satisfy the given condition:
13 , 19 , 25 , 31 , 37 , 43 , 49 , 55 , 61 , 67 , 73 , 79 , 85 , 91 , 97
There are 15 elements in this set. Therefore, the number of elements in the given set is 15.

Q13: Let A = {1, 2, 3, 4} and R be a relation on the set A × A defined by R = {((a, b), (c, d)): 2a + 3b = 4c + 5d}. Then the number of elements in R is ____________.
Ans: 
6
2a + 3b = 4c + 5d
Given A = {1, 2, 3, 4}, the maximum value of 2a + 3b is 20, when (a, b) = (4, 4), and the minimum value of 4c + 5d is 9, when (c, d) = (1, 1). Therefore, the possible values for 2a + 3b = 4c + 5d are 9, 13, 14, 17, 18, and 19.
Now, let's find the combinations of (a, b), (c, d) that satisfy the given equation:
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
There are a total of 6 elements in the relation R for the given equation with the specified values of a, b, c, and d.

Q14: Let A = { − 4 , − 3 , − 2 , 0 , 1 , 3 , 4 } and R = {(a , b) ∈ A × A : b = | a | or b2 = a + 1} be a relation on A. Then the minimum number of elements, that must be added to the relation R so that it becomes reflexive and symmetric, is __________
Ans: 
7
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
Relation to be reflexive JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
⇒ (− 4 , − 4) , (− 3 , − 3) , (− 2 , − 2) also should be added in R.
Relation to be symmetric if (a , b) ∈ R, then (b , a) ∈ R ∀ a , b ∈ A
⇒ (4 , − 4) , (3, − 3) , (1 , 0) , (− 2 , 3) also should be added in R
⇒ Minimum number of elements to be added to R = 3 + 4 = 7

Q15: The number of relations, on the set {1 , 2 , 3} containing (1 , 2) and (2 , 3), which are reflexive and transitive but not symmetric, is __________.
Ans: 
4
(1 , 1) , (2 , 2) , (3 , 3) ∈ R
Since (1 , 2) , (2, 3) ∈ R, (1 , 3) must ∈ R
Possible cases:
Case-1 : All of (2 , 1) , (3 , 2) , (3 , 1) ∉ R → 1 relation.
Case-2 : Only one of (2 , 1) , (3 , 2) , (3 , 1) ∈ R → 3 relations.
Note that exactly two of (2 , 1) , (3 , 2) , (3 , 1) ∈ R is not possible because if two of these ∈ R , third must ∈ R to make relation transitive.
1. R1 = {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)} Here, none of (2,1), (3,2), (3,1) are in R1.
2. R2 = {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3), (2,1)} Here, only (2,1) is in R2, and neither (3,2) nor (3,1) are in R2.
3. R3 = {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3), (3,2)} Here, only (3,2) is in R3, and neither (2,1) nor (3,1) are in R3.
4. R4 = {(1,1), (2,2), (3,3), (1,2), (2,3), (1,3), (3,1)} Here, only (3,1) is in R4, and neither (2,1) nor (3,2) are in R4.

Q16: The number of elements in the set {n ∈ Z : | n2 − 10n + 19 | < 6} is _________.
Ans: 
6
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced
Thus, number of element in the set is '6'

Q17: Let A = { 0 , 3 , 4 , 6 , 7 , 8 , 9 , 10 } and R be the relation defined on A such that R = {(x , y) ∈ A × A : x − y is odd positive integer or x − y = 2}. The minimum number of elements that must be added to the relation R, so that it is a symmetric relation, is equal to ____________.
Ans:
19
We have, A = {0 , 3 , 4 , 6 , 7 , 8 , 9 , 10}
Case I: x − y is odd, if one is odd and one is even and x > y.
∴ Possibilites are {(3 , 0) , (4 , 3) , (6 , 3) , (7 , 6) , (7 , 4) , (7 , 0) , (8 , 7) , (8 , 3) , (9 , 8) , (9 , 6) , (9 , 4) , (9 , 0) , (10 , 9) , (10 , 7) , (10 , 3)}
No. of cases = 15
Case II: x − y = 2
∴ Possibilities are {(6 , 4) , (8 , 6) , (9 , 7) , (10 , 8)}
∴ No. of cases = 4
So, minimum ordered pair to be added = 15 + 4 = 19

Q18: Let A = {1, 2, 3, 4 , … . , 10} and B = {0 , 1 , 2 , 3 , 4}. The number of elements in the relation R = {(a , b) ∈ A × A : 2 (a − b)2 + 3 (a − b) ∈ B} is ___________.
Ans: 
18
Given sets : A={1, 2, 3, 4, ............,10}
B = {0, 1, 2, 3, 4}
We are looking for pairs (a , b) ∈ A × A such that :
2 (a - b)2 + 3 (a - b) ∈ B
Let's break down the relation :
Case 1: a − b = 0
2(a - b)2 + 3 (a - b) = 0
Pairs : (1 , 1) , (2 , 2) , (3 , 3) , … , ( 10 , 10 ) which gives 10 pairs.
Case 2 : a − b = 1
2(a - b)2 + 3 (a - b) = 2 (1) + 3 (1) = 5
But 5 is not in B, so no pairs for this case.
Case 3 : a − b = − 1
2(a - b)2 + 3 (a - b) = 2 (1) − 3 (1) = − 1
This value is not in B, so no pairs for this case.
Case 4 : a − b = 2
2(a - b)2 + 3 (a - b) = 2(4) + 3 (2) = 8 + 6 = 14
Again, 14 is not in B, so no pairs for this case.
Case 5: a − b = − 2
2(a - b)2 + 3 (a - b) = 2(4) − 3(2) = 8 − 6 = 2
Pairs : (1 , 3) , (2, 4), (3 , 5) , (4 , 6) , (5 , 7) , (6 , 8) , (7 , 9) , (8 , 10) which gives 8 pairs.
For any other a − b value, the quadratic will grow larger than the maximum value in B, so we don't need to consider them.
In total, we have 10 + 8 = 18 pairs in the relation R.
Therefore, the number of elements in the relation R is 18.

Q19: Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is _____________.
Ans:
43
Elements of the type 3k = 3
Elements of the type 3k + 1 = 1 , 7 , 9
Elements of the type 3k + 2 = 2 , 5 , 11
Subsets containing one element S1 = 1
Subsets containing two elements
S2 = 3C 1 × 3C1 = 9
Subsets containing three elements
S3 = 3C1 × 3C1 + 1 + 1 = 11
Subsets containing four elements
S4 = 3C3 + 3C3 + 3C2 × 3C2 = 11
Subsets containing five elements
S5 = 3C2 × 3C2 × 1 = 9
Subsets containing six elements
S6 = 1
Subsets containing seven elements S7 = 1
⇒ sum = 43

Q20: The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
Ans:
13
R = { (a , b) (b , c) (b , d)}
S : {a , b , c , d}
Adding (a , a) , (b , b) , (c , c) , (d , d) make reflexive.
Adding (b , a) , (c , b) , (d , b) make Symmetric
And adding (a , d) , (a , c) to make transitive
Further (d , a) & (c , a) to be added to make Symmetricity.
Further (c , d) & (d , c) also be added.
So total 13 elements to be added to make equivalence.

The document JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced is a part of the JEE Course Chapter-wise Tests for JEE Main & Advanced.
All you need of JEE at this link: JEE
446 docs|930 tests

Top Courses for JEE

FAQs on JEE Main Previous Year Questions (2023): Sets and Relations - Chapter-wise Tests for JEE Main & Advanced

1. What are sets and relations in the context of JEE Main?
Ans. Sets and relations are fundamental concepts in mathematics and are important topics in the JEE Main exam. A set is a collection of objects, while a relation is a connection or association between two or more sets. Understanding these concepts is crucial for solving problems related to functions, equations, and inequalities.
2. How are sets represented in JEE Main?
Ans. In JEE Main, sets are typically represented using roster form or set-builder form. In roster form, the elements of a set are listed within curly braces, separated by commas. For example, {1, 2, 3} represents a set containing the elements 1, 2, and 3. In set-builder form, the elements of a set are defined using a specific property or condition. For example, {x | x is an even number} represents a set of all even numbers.
3. What are the types of relations that are commonly asked in JEE Main?
Ans. In JEE Main, the types of relations commonly asked include reflexive, symmetric, and transitive relations. A reflexive relation is one in which every element is related to itself. A symmetric relation is one in which if element a is related to element b, then element b is also related to element a. A transitive relation is one in which if element a is related to element b, and element b is related to element c, then element a is also related to element c.
4. How can I determine if a relation is reflexive, symmetric, or transitive in JEE Main?
Ans. To determine if a relation is reflexive, symmetric, or transitive in JEE Main, you need to check certain conditions. - For a relation to be reflexive, every element in the set should be related to itself. - For a relation to be symmetric, if element a is related to element b, then element b should also be related to element a. - For a relation to be transitive, if element a is related to element b, and element b is related to element c, then element a should also be related to element c. By verifying these conditions, you can determine the nature of the relation in the given problem.
5. How can I solve JEE Main questions related to sets and relations?
Ans. To solve JEE Main questions related to sets and relations, it is important to understand the basic concepts and properties. Practice solving various types of problems, including those involving set operations, Venn diagrams, and relations. Familiarize yourself with the definitions and properties of different types of relations, such as reflexive, symmetric, and transitive relations. Work on developing problem-solving strategies and techniques specific to sets and relations. Practice previous year question papers and mock tests to improve your speed and accuracy in solving these types of problems.
446 docs|930 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Semester Notes

,

mock tests for examination

,

Summary

,

JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

,

Exam

,

video lectures

,

practice quizzes

,

Objective type Questions

,

Sample Paper

,

Viva Questions

,

shortcuts and tricks

,

pdf

,

Important questions

,

MCQs

,

study material

,

Free

,

past year papers

,

ppt

,

Previous Year Questions with Solutions

,

JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

,

JEE Main Previous Year Questions (2023): Sets and Relations | Chapter-wise Tests for JEE Main & Advanced

,

Extra Questions

;