Power Amplifier | Analog and Digital Electronics - Electrical Engineering (EE) PDF Download

In practice, any amplifier consists of few stages of amplification. If we consider audio amplification, it has several stages of amplification, depending upon our requirement.

Power Amplifier

After the audio signal is converted into electrical signal, it has several voltage amplifications done, after which the power amplification of the amplified signal is done just before the loud speaker stage. This is clearly shown in the below figure.

Power Amplifier | Analog and Digital Electronics - Electrical Engineering (EE)

While the voltage amplifier raises the voltage level of the signal, the power amplifier raises the power level of the signal. Besides raising the power level, it can also be said that a power amplifier is a device which converts DC power to AC power and whose action is controlled by the input signal.

The DC power is distributed according to the relation,

DC power input = AC power output + losses



Power Transistor

For such Power amplification, a normal transistor would not do. A transistor that is manufactured to suit the purpose of power amplification is called as a Power transistor.

A Power transistor differs from the other transistors, in the following factors.

  • It is larger in size, in order to handle large powers.

  • The collector region of the transistor is made large and a heat sink is placed at the collector-base junction in order to minimize heat generated.

  • The emitter and base regions of a power transistor are heavily doped.

  • Due to the low input resistance, it requires low input power.

Hence there is a lot of difference in voltage amplification and power amplification. So, let us now try to get into the details to understand the differences between a voltage amplifier and a power amplifier.

Difference between Voltage and Power Amplifiers

Let us try to differentiate between voltage and power amplifier.

Voltage Amplifier

The function of a voltage amplifier is to raise the voltage level of the signal. A voltage amplifier is designed to achieve maximum voltage amplification.

The voltage gain of an amplifier is given by

Av=β(RcRin)Av=β(RcRin)

The characteristics of a voltage amplifier are as follows −

  • The base of the transistor should be thin and hence the value of β should be greater than 100.

  • The resistance of the input resistor Rin should be low when compared to collector load RC.

  • The collector load RC should be relatively high. To permit high collector load, the voltage amplifiers are always operated at low collector current.

  • The voltage amplifiers are used for small signal voltages.

Power Amplifier

The function of a power amplifier is to raise the power level of input signal. It is required to deliver a large amount of power and has to handle large current.

The characteristics of a power amplifier are as follows −

  • The base of transistor is made thicken to handle large currents. The value of β being (β > 100) high.

  • The size of the transistor is made larger, in order to dissipate more heat, which is produced during transistor operation.

  • Transformer coupling is used for impedance matching.

  • Collector resistance is made low.

The comparison between voltage and power amplifiers is given below in a tabular form.

S.NoParticularVoltage AmplifierPower Amplifier
1βHigh (>100)Low (5 to 20)
2RCHigh (4-10 KΩ)Low (5 to 20 Ω)
3CouplingUsually R-C couplingInvariably transformer coupling
4Input voltageLow (a few m V)High (2-4 V)
5Collector currentLow (≈ 1 mA)High (> 100 mA)
6Power outputLowHigh
7Output impendenceHigh (≈ 12 K Ω)Low (200 Ω)

The Power amplifiers amplify the power level of the signal. This amplification is done in the last stage in audio applications. The applications related to radio frequencies employ radio power amplifiers. But the operating point of a transistor, plays a very important role in determining the efficiency of the amplifier. The main classification is done based on this mode of operation.

The classification is done based on their frequencies and also based on their mode of operation.

Classification Based on Frequencies

Power amplifiers are divided into two categories, based on the frequencies they handle. They are as follows.

  • Audio Power Amplifiers − The audio power amplifiers raise the power level of signals that have audio frequency range (20 Hz to 20 KHz). They are also known as Small signal power amplifiers.

  • Radio Power Amplifiers − Radio Power Amplifiers or tuned power amplifiers raise the power level of signals that have radio frequency range (3 KHz to 300 GHz). They are also known as large signal power amplifiers.



Classification Based on Mode of Operation

On the basis of the mode of operation, i.e., the portion of the input cycle during which collector current flows, the power amplifiers may be classified as follows.

  • Class A Power amplifier − When the collector current flows at all times during the full cycle of signal, the power amplifier is known as class A power amplifier.

  • Class B Power amplifier − When the collector current flows only during the positive half cycle of the input signal, the power amplifier is known as class B power amplifier.

  • Class C Power amplifier − When the collector current flows for less than half cycle of the input signal, the power amplifier is known as class C power amplifier.

There forms another amplifier called Class AB amplifier, if we combine the class A and class B amplifiers so as to utilize the advantages of both.

Before going into the details of these amplifiers, let us have a look at the important terms that have to be considered to determine the efficiency of an amplifier.

Terms Considering Performance

The primary objective of a power amplifier is to obtain maximum output power. In order to achieve this, the important factors to be considered are collector efficiency, power dissipation capability and distortion. Let us go through them in detail.

Collector Efficiency

This explains how well an amplifier converts DC power to AC power. When the DC supply is given by the battery but no AC signal input is given, the collector output at such a condition is observed as collector efficiency.

The collector efficiency is defined as

η=averagea.cpoweroutputaveraged.cpowerinputtotransistorη=averagea.cpoweroutputaveraged.cpowerinputtotransistor

For example, if the battery supplies 15W and AC output power is 3W. Then the transistor efficiency will be 20%.

The main aim of a power amplifier is to obtain maximum collector efficiency. Hence the higher the value of collector efficiency, the efficient the amplifier will be.

Power Dissipation Capacity

Every transistor gets heated up during its operation. As a power transistor handles large currents, it gets more heated up. This heat increases the temperature of the transistor, which alters the operating point of the transistor.

So, in order to maintain the operating point stability, the temperature of the transistor has to be kept in permissible limits. For this, the heat produced has to be dissipated. Such a capacity is called as Power dissipation capability.

Power dissipation capability can be defined as the ability of a power transistor to dissipate the heat developed in it. Metal cases called heat sinks are used in order to dissipate the heat produced in power transistors.

Distortion

A transistor is a non-linear device. When compared with the input, there occur few variations in the output. In voltage amplifiers, this problem is not pre-dominant as small currents are used. But in power amplifiers, as large currents are in use, the problem of distortion certainly arises.

Distortion is defined as the change of output wave shape from the input wave shape of the amplifier. An amplifier that has lesser distortion, produces a better output and hence considered efficient.

The document Power Amplifier | Analog and Digital Electronics - Electrical Engineering (EE) is a part of the Electrical Engineering (EE) Course Analog and Digital Electronics.
All you need of Electrical Engineering (EE) at this link: Electrical Engineering (EE)
137 videos|143 docs|71 tests

Top Courses for Electrical Engineering (EE)

FAQs on Power Amplifier - Analog and Digital Electronics - Electrical Engineering (EE)

1. What is a power amplifier in electrical engineering?
Ans. A power amplifier is a type of electronic amplifier designed to increase the power of the input signal, making it suitable for driving the load like a loudspeaker.
2. What is the role of power transistors in a power amplifier?
Ans. Power transistors are the key components in power amplifiers that handle high power levels and are responsible for amplifying the input signal to a higher power output.
3. What is the difference between voltage and power amplifiers?
Ans. Voltage amplifiers increase the voltage level of the input signal, while power amplifiers increase the power level of the signal, making it suitable for driving loads like speakers.
4. How are power amplifiers classified based on frequencies?
Ans. Power amplifiers can be classified based on frequencies as audio power amplifiers (for audio frequencies) and radio frequency power amplifiers (for radio frequencies).
5. What are some terms to consider for the performance of a power amplifier?
Ans. Some important terms to consider for the performance of a power amplifier include power dissipation capacity, efficiency, distortion, and gain.
137 videos|143 docs|71 tests
Download as PDF
Explore Courses for Electrical Engineering (EE) exam

Top Courses for Electrical Engineering (EE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Power Amplifier | Analog and Digital Electronics - Electrical Engineering (EE)

,

Exam

,

Power Amplifier | Analog and Digital Electronics - Electrical Engineering (EE)

,

Previous Year Questions with Solutions

,

Free

,

video lectures

,

Objective type Questions

,

shortcuts and tricks

,

MCQs

,

Extra Questions

,

Summary

,

ppt

,

practice quizzes

,

Power Amplifier | Analog and Digital Electronics - Electrical Engineering (EE)

,

Viva Questions

,

Important questions

,

pdf

,

Semester Notes

,

mock tests for examination

,

Sample Paper

,

past year papers

,

study material

;