Table of contents |
|
Introduction |
|
Array |
|
NumPy Array |
|
Indexing and Slicing |
|
Reshaping Arrays |
|
Splitting Arrays |
|
Statistical Operations on Arrays |
|
Loading Arrays from Files |
|
Saving NumPy Arrays in Files on Disk |
|
Difference Between List and Array
Creation of NumPy Arrays from List
array1 = np.array([10, 20, 30])
array1
# Output: array([10, 20, 30])
array2 = np.array([5, -7.4, 'a', 7.2])
array2
# Output: array(['5', '-7.4', 'a', '7.2'], dtype='
array3 = np.array([[2.4, 3], [4.91, 7], [0, -1]])
array3
# Output: array([[ 2.4 , 3. ],
# [ 4.91, 7. ],
# [ 0. , -1. ]])
Attributes of NumPy Arrays
Other Ways of Creating NumPy Arrays
array4 = np.array([[1, 2], [3, 4]], dtype=float)
array4
# Output: array([[1., 2.],
# [3., 4.]])
zeros(): Creates an array with all elements initialized to 0, with a default data type of float. Example:
array5 = np.zeros((3, 4))
array5
# Output: array([[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]])
array6 = np.ones((3, 2))
array6
# Output: array([[1., 1.],
# [1., 1.],
# [1., 1.]])
array7 = np.arange(6)
array7
# Output: array([0, 1, 2, 3, 4, 5])
array8 = np.arange(-2, 24, 4)
array8
# Output: array([-2, 2, 6, 10, 14, 18, 22])
Indexing
Slicing
array8 = np.array([-2, 2, 6, 10, 14, 18, 22])
array8[3:5]
# Output: array([10, 14])
array8[::-1]
# Output: array([22, 18, 14, 10, 6, 2, -2])
array3 = np.array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21])
array3.reshape(3, 4)
# Output: array([[10, 11, 12, 13],
# [14, 15, 16, 17],
# [18, 19, 20, 21]])
array3.reshape(2, 6)
# Output: array([[10, 11, 12, 13, 14, 15],
# [16, 17, 18, 19, 20, 21]])
array4 = np.array([[10, -7, 0, 20],
[-5, 1, 200, 40],
[30, 1, -1, 4],
[1, 2, 0, 4],
[0, 1, 0, 2]])
first, second, third = np.split(array4, [1, 3])
first
# Output: array([[10, -7, 0, 20]])
second
# Output: array([[-5, 1, 200, 40],
# [30, 1, -1, 4]])
third
# Output: array([[1, 2, 0, 4],
# [0, 1, 0, 2]])
arrayA = np.array([1, 0, 2, -3, 6, 8, 4, 7])
arrayA.max()
# Output: 8
arrayB = np.array([[3, 6], [4, 2]])
arrayB.max()
# Output: 6
arrayB.max(axis=1)
# Output: array([6, 4])
arrayB.max(axis=0)
# Output: array([4, 6])
arrayA.min()
# Output: -3
arrayB.min()
# Output: 2
arrayB.min(axis=0)
# Output: array([3, 2])
arrayA.sum()
# Output: 25
arrayB.sum()
# Output: 15
arrayB.sum(axis=1)
# Output: array([9, 6])
arrayA.mean()
# Output: 3.125
arrayB.mean()
# Output: 3.75
arrayB.mean(axis=0)
# Output: array([3.5, 4.])
arrayA.std()
# Output: 3.550968177835448
stud1, stud2, stud3, stud4, stud5 = np.loadtxt('C:/NCERT/data.txt', skiprows=1, delimiter=', ', dtype=int)
stud1
# Output: array([1, 36, 18, 57])
rollno, mks1, mks2, mks3 = np.loadtxt('C:/NCERT/data.txt', skiprows=1, delimiter=', ', unpack=True, dtype=int)
rollno
# Output: array([1, 2, 3, 4, 5])
dataarray = np.genfromtxt('C:/NCERT/dataMissing.txt', skip_header=1, delimiter=', ')
dataarray
# Output: array([[1., 36., 18., 57.],
# [2., nan, 23., 45.],
# [3., 43., 51., nan],
# [4., 41., 40., 60.],
# [5., 13., 18., 27.]])
dataarray = np.genfromtxt('C:/NCERT/dataMissing.txt', skip_header=1, delimiter=', ', filling_values=-999, dtype=int)
dataarray
# Output: array([[1, 36, 18, 57],
# [2, -999, 23, 45],
# [3, 43, 51, -999],
# [4, 41, 40, 60],
# [5, 13, 18, 27]])
1. What is NumPy and why is it important in Python programming? | ![]() |
2. How do I create a NumPy array? | ![]() |
3. What are the different types of indexing available in NumPy? | ![]() |
4. How can I sort a NumPy array? | ![]() |
5. What is the purpose of `numpy.genfromtxt()`? | ![]() |