Class 9 Exam  >  Class 9 Notes  >  Exercise 8.2 : Quadrilaterals

Exercise 8.2 : Quadrilaterals - Class 9 PDF Download

Exercise 8.2

Q1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see the given figure). AC is diagonal. Show that:
(i) SR || AC and SR = (1/2) AC
(ii) PQ = SR 
(iii) PQRS is a parallelogram.

Exercise 8.2 : Quadrilaterals - Class 9

Ans: Given: ABCD is a quadrilateral
To prove: (i) SR || AC and SR = 1/2 AC
(ii) PQ = SR
(iii) PQRS is a parallelogram.
(i) In ΔADC, S and R are the mid-points of sides AD and CD respectively.
In a triangle, the line segment connecting the midpoints of any two sides is parallel to and half of the third side.
∴ SR || AC and SR = 1/2 AC ... (1)
(ii) In ΔABC, P and Q are mid-points of sides AB and BC respectively. Therefore, by using midpoint theorem,
PQ || AC and  PQ = 1/2 AC ... (2)
Using Equations (1) and (2), we obtain
PQ || SR and PQ = SR
(iii) From Equation (3), we obtained
PQ || SR and PQ = SR
Clearly, one pair of quadrilateral PQRS opposing sides is parallel and equal. PQRS is thus a parallelogram.


Q2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
Ans: 
Exercise 8.2 : Quadrilaterals - Class 9

Given: ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively.
To Prove: PQRS is a rectangle.
Construction:
Join AC and BD.
Proof:
In ΔDRS and ΔBPQ,
DS = BQ (Halves of the opposite sides of the rhombus)
∠SDR = ∠QBP (Opposite angles of the rhombus)
DR = BP (Halves of the opposite sides of the rhombus)
ΔDRS ≅ ΔBPQ [SAS congruency]
RS = PQ [CPCT]———————- (i)
In ΔQCR and ΔSAP,
RC = PA (Halves of the opposite sides of the rhombus)
∠RCQ = ∠PAS (Opposite angles of the rhombus)
CQ = AS (Halves of the opposite sides of the rhombus)
ΔQCR ≅ ΔSAP [SAS congruency]
RQ = SP [CPCT]———————- (ii)
Now,
In ΔCDB,
R and Q are the mid points of CD and BC, respectively.
⇒ QR || BD
also,
P and S are the mid points of AD and AB, respectively.
⇒ PS || BD
⇒ QR || PS
PQRS is a parallelogram.
also, ∠PQR = 90°
Now,
In PQRS,
RS = PQ and RQ = SP from (i) and (ii)
∠Q = 90°
PQRS is a rectangle.


Q3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
Ans: 

Exercise 8.2 : Quadrilaterals - Class 9Given: ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively.
To prove: The quadrilateral PQRS is a rhombus.
Proof: Let us join AC and BD.
In ΔABC, P and Q are the mid-points of AB and BC respectively.
∴ PQ || AC and PQ = 1/2 AC (Mid-point theorem) ... (1)
Similarly, in ΔADC , SR ||  AR, SR = 1/2 AC (Mid-point theorem) ... (2)
Clearly,  PQ || SR and  PQ = SR
It is a parallelogram because one pair of opposing sides of quadrilateral PQRS is equal and parallel to each other.
∴ PS || QR , PS = QR (Opposite sides of parallelogram) ... (3)
In ΔBCD, Q and R are the mid-points of side BC and CD respectively.
∴ QR || BD, QR = 1/2 BD (Mid-point theorem) ... (4)
Also, the diagonals of a rectangle are equal.
∴ AC = BD ... (5)
By using Equations (1), (2), (3), (4), and (5), we obtain
PQ = QR = SR = PS
So, PQRS is a rhombus


Q4. ABCD is a trapezium in which  AB || DC , BD is a diagonal and E is the mid - point of AD. A line is drawn through E parallel to AB intersecting BC at F (see the given figure). Show that F is the mid-point of BC.

Exercise 8.2 : Quadrilaterals - Class 9

Ans: Given: ABCD is a trapezium in which AB || DC , BD is a diagonal and E is the mid - point of AD. A line is drawn through E parallel to AB intersecting BC at F.
To prove: F is the mid-point of BC.
Proof: Let EF intersect DB at G.
We know that a line traced through the mid-point of any side of a triangle and parallel to another side bisects the third side by the reverse of the mid-point theorem.
In  ΔABD, EF || AB and E is the mid-point of AD.
Hence, G will be the mid-point of DB.
As  EF || AB, AB || CD,
∴ EF || CD (Two lines parallel to the same line are parallel)
In  ΔBCD, GF || CD and G is the mid-point of line BD. 
So, by using the converse of mid-point theorem, F is the mid-point of BC.


Q5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see the given figure). Show that the line segments AF and EC trisect the diagonal BD.
Ans: Given: In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively to prove: The line segments AF and EC trisect the diagonal BD.

Exercise 8.2 : Quadrilaterals - Class 9

To Prove: The line segments AF and EC trisect the diagonal BD. 

Proof: ABCD is a parallelogram.
AB || CD
And hence, AE || FC
Again, AB = CD (Opposite sides of parallelogram ABCD)
1/2 AB = 1/2 CD
AE = FC (E and F are mid-points of side AB and CD)
In quadrilateral AECF, one pair of opposite sides (AE and CF) is parallel and the same as each other. So, AECF is a parallelogram.
∴ AF || EC (Opposite sides of a parallelogram)
In  ΔDQC, F is the mid-point of side DC and  FP || CQ (as  AF || EC ). 
So, by using the converse of mid-point theorem, it can be said that P is the mid-point of DQ.
∴ DP= PQ ... (1)
Similarly, in ΔAPB , E is the mid-point of side AB and EQ || AP (as  AF || EC ).
As a result, the reverse of the mid-point theorem may be used to say that Q is the mid-point of PB.
∴ PQ = QB ... (2)
From Equations (1) and (2),
DP = PQ= BQ
Hence, the line segments AF and EC trisect the diagonal BD.


Q6. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of AC 
(ii) MD ⊥ AC
(iii) CM = MA = 1/2 AB
Exercise 8.2 : Quadrilaterals - Class 9Ans: Given: ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.
(i) In ΔABC,
It is given that M is the mid-point of AB and MD || BC.
Therefore, D is the mid-point of AC. (Converse of the mid-point theorem)
(ii) As DM || CB and AC is a transversal line for them, therefore,(Co-interior angles)
(iii) Join MC.
In ΔAMD and  ΔCMD,
AD = CD (D is the mid-point of side AC)
∠ADM = ∠CDM (Each)
DM = DM (Common)
∴ ΔAMD ≅ ΔCMD (By SAS congruence rule)
Therefore,
AM = CM (By CPCT)
However, 
AM = 1/2 AB (M is mid-point of AB)
Therefore, it is said that CM = AM = 1/2 AB.

The document Exercise 8.2 : Quadrilaterals - Class 9 is a part of Class 9 category.
All you need of Class 9 at this link: Class 9

FAQs on Exercise 8.2 : Quadrilaterals - Class 9

1. What are quadrilaterals?
Ans. Quadrilaterals are geometric shapes that have four sides. They are polygons with four straight sides and four angles.
2. What are the different types of quadrilaterals?
Ans. There are several types of quadrilaterals, including rectangles, squares, parallelograms, rhombuses, trapezoids, and kites.
3. How can we identify different types of quadrilaterals?
Ans. Different types of quadrilaterals can be identified based on their properties such as the lengths of their sides, the measures of their angles, and the presence of parallel or congruent sides.
4. What are the properties of a square?
Ans. A square is a type of quadrilateral that has all four sides equal in length and all four angles equal to 90 degrees. It also has two pairs of parallel sides.
5. How can we calculate the area of a quadrilateral?
Ans. The area of a quadrilateral can be calculated differently depending on the type of quadrilateral. For example, the area of a rectangle can be found by multiplying its length and width, while the area of a parallelogram can be found by multiplying its base and height.
Download as PDF

Top Courses for Class 9

Related Searches

Exercise 8.2 : Quadrilaterals - Class 9

,

study material

,

Previous Year Questions with Solutions

,

Semester Notes

,

MCQs

,

Important questions

,

practice quizzes

,

Exercise 8.2 : Quadrilaterals - Class 9

,

Exercise 8.2 : Quadrilaterals - Class 9

,

video lectures

,

Free

,

Summary

,

Exam

,

past year papers

,

Viva Questions

,

Extra Questions

,

Sample Paper

,

ppt

,

shortcuts and tricks

,

mock tests for examination

,

Objective type Questions

,

pdf

;