NEET Exam  >  NEET Notes  >  Physics Class 12  >  NCERT Solutions: Electromagnetic Waves

NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

NCERT QUESTIONS
(Electromagnetic Waves)
Q8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15 A.
(a) Calculate the capacitance and the rate of charge of potential difference between the plates.
(b) Obtain the displacement current across the plates.
(c) Is Kirchhoff’s first rule (junction rule) valid at each plate of the capacitor? Explain.
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Ans:  Radius of each circular plate, r = 12 cm = 0.12 m
Distance between the plates, d = 5 cm = 0.05 m
Charging current, I = 0.15 A
Permittivity of free space, NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves= 8.85 × 10−12 C2 N−1 m−2
(a) Capacitance between the two plates is given by the relation,
C NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
A = Area of each plate NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Charge on each plate, q = CV
Where,
V = Potential difference across the plates
Differentiation on both sides with respect to time (t) gives:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Therefore, the change in potential difference between the plates is 1.87 ×109 V/s.
(b) The displacement current across the plates is the same as the conduction current. Hence, the displacement current, id is 0.15 A.
(c) Yes
Kirchhoff’s first rule is valid at each plate of the capacitor provided that we take the sum of conduction and displacement for current.

Q8.2:  A parallel plate capacitor (Fig. 8.7) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s−1.
(a) What is the rms value of the conduction current?
(b) Is the conduction current equal to the displacement current?
(c) Determine the amplitude of B at a point 3.0 cm from the axis between the plates.
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Ans:  Radius of each circular plate, R = 6.0 cm = 0.06 m
Capacitance of a parallel plate capacitor, C = 100 pF = 100 × 10−12 F
Supply voltage, V = 230 V
Angular frequency, ω = 300 rad s−1
(a) Rms value of conduction current, I NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
XC = Capacitive reactance
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
I = V × ωC
= 230 × 300 × 100 × 10−12
= 6.9 × 10−6 A
= 6.9 μA
Hence, the rms value of conduction current is 6.9 μA.
(b) Yes, conduction current is equal to displacement current.
(c) Magnetic field is given as:
B NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
μ0 = Free space permeability NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
I0 = Maximum value of current =NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
r = Distance between the plates from the axis = 3.0 cm = 0.03 m
B NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
= 1.63 × 10−11 T
Hence, the magnetic field at that point is 1.63 × 10−11 T.

Q8.3: What physical quantity is the same for X-rays of wavelength 10−10 m, red light of wavelength 6800 Å and radiowaves of wavelength 500 m?
Ans:  The speed of light (3 × 108 m/s) in a vacuum is the same for all wavelengths. It is independent of the wavelength in the vacuum.

Q8.4: A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?
Ans:  The electromagnetic wave travels in a vacuum along the z-direction. The electric field (E) and the magnetic field (H) are in the x-y plane. They are mutually perpendicular.
Frequency of the wave, ν = 30 MHz = 30 × 106 s−1
Speed of light in a vacuum, c = 3 × 108 m/s
Wavelength of a wave is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

Q8.5: A radio can tune in to any station in the 7.5 MHz to 12 MHz band. What is the corresponding wavelength band?
Ans:  A radio can tune to minimum frequency, ν1 = 7.5 MHz= 7.5 × 106 Hz
Maximum frequency, ν2 = 12 MHz = 12 × 106 Hz
Speed of light, c = 3 × 108 m/s
Corresponding wavelength for ν1 can be calculated as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Corresponding wavelength for ν2 can be calculated as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Thus, the wavelength band of the radio is 40 m to 25 m.

Q8.6: A charged particle oscillates about its mean equilibrium position with a frequency of 109 Hz. What is the frequency of the electromagnetic waves produced by the oscillator?
Ans:  The frequency of an electromagnetic wave produced by the oscillator is the same as that of a charged particle oscillating about its mean position i.e., 109 Hz.

Q8.7: The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is B0 = 510 nT. What is the amplitude of the electric field part of the wave?
Ans:  Amplitude of magnetic field of an electromagnetic wave in a vacuum,
B0 = 510 nT = 510 × 10−9 T
Speed of light in a vacuum, c = 3 × 108 m/s
Amplitude of electric field of the electromagnetic wave is given by the relation,
E = cB0
= 3 × 108 × 510 × 10−9 = 153 N/C
Therefore, the electric field part of the wave is 153 N/C.

Q8.8: Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and that its frequency is ν = 50.0 MHz. (a) Determine, B0, ω, k, and λ. (b) Find expressions for E and B.
Ans:  Electric field amplitude, E0 = 120 N/C
Frequency of source, ν = 50.0 MHz = 50 × 106 Hz
Speed of light, c = 3 × 108 m/s
(a) Magnitude of magnetic field strength is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Angular frequency of source is given as:
ω = 2πν
= 2π × 50 × 106
= 3.14 × 108 rad/s
Propagation constant is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Wavelength of wave is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
(b) Suppose the wave is propagating in the positive x direction. Then, the electric field vector will be in the positive y direction and the magnetic field vector will be in the positive z direction. This is because all three vectors are mutually perpendicular.
Equation of electric field vector is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
And, magnetic field vector is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

Q8.9: The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula E = (for energy of a quantum of radiation: photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?
Ans:  Energy of a photon is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
h = Planck’s constant = 6.6 × 10−34 Js
c = Speed of light = 3 × 108 m/s
λ = Wavelength of radiation
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
The given table lists the photon energies for different parts of an electromagnetic spectrum for differentλ.
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
The photon energies for the different parts of the spectrum of a source indicate the spacing of the relevant energy levels of the source.

Q8.10: In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m−1.
(a) What is the wavelength of the wave?
(b) What is the amplitude of the oscillating magnetic field?
(c) Show that the average energy density of the E field equals the average energy density of the B field. [c = 3 × 108 m s−1.]
Ans:  Frequency of the electromagnetic wave, ν = 2.0 × 1010 Hz
Electric field amplitude, E0 = 48 V m−1
Speed of light, c = 3 × 108 m/s
(a) Wavelength of a wave is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
(b) Magnetic field strength is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
(c) Energy density of the electric field is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
And, energy density of the magnetic field is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
0 = Permittivity of free space
μ0 = Permeability of free space
We have the relation connecting E and B as:
E = cB … (1)
Where,
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves… (2)
Putting equation (2) in equation (1), we get
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Squaring both sides, we get
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves


Old NCERT Solutions

Q1: Suppose that the electric field part of an electromagnetic wave in vacuum is E = {(3.1 N/C) cos [(1.8 rad/m) y  (5.4 × 106 rad/s)t]}NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves .
(a) What is the direction of propagation?
(b) What is the wavelength λ?
(c) What is the frequency ν?
(d) What is the amplitude of the magnetic field part of the wave?
(e) Write an expression for the magnetic field part of the wave.
Ans:  (a) From the given electric field vector, it can be inferred that the electric field is directed along the negative x direction. Hence, the direction of motion is along the negative y direction i.e., NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves.
(b) It is given that,
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
The general equation for the electric field vector in the positive x direction can be written as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
On comparing equations (1) and (2), we get
Electric field amplitude, E0 = 3.1 N/C
Angular frequency, ω = 5.4 × 108 rad/s
Wave number, k = 1.8 rad/m
Wavelength, NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves = 3.490 m
(c) Frequency of wave is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
(d) Magnetic field strength is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
c = Speed of light = 3 × 108 m/s
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
(e) On observing the given vector field, it can be observed that the magnetic field vector is directed along the negative z direction. Hence, the general equation for the magnetic field vector is written as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

Q2: About 5% of the power of a 100 W light bulb is converted to visible radiation. What is the average intensity of visible radiation
(a) at a distance of 1 m from the bulb?
(b) at a distance of 10 m?
Assume that the radiation is emitted isotropically and neglect reflection.
Ans:  Power rating of bulb, P = 100 W
It is given that about 5% of its power is converted into visible radiation.
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic WavesPower of visible radiation,
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Hence, the power of visible radiation is 5W.
(a) Distance of a point from the bulb, d = 1 m
Hence, intensity of radiation at that point is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
(b) Distance of a point from the bulb, d1 = 10 m
Hence, intensity of radiation at that point is given as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

Q3: Use the formula λm T= 0.29 cm K to obtain the characteristic temperature ranges for different parts of the electromagnetic spectrum. What do the numbers that you obtain tell you?
Ans:  A body at a particular temperature produces a continuous spectrum of wavelengths. In case of a black body, the wavelength corresponding to maximum intensity of radiation is given according to Planck’s law. It can be given by the relation,
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
Where,
λm = maximum wavelength
T = temperature
Thus, the temperature for different wavelengths can be obtained as:
For λm = 10−4 cm; NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
For λm = 5 ×10−5 cm; NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
For λm = 10−6 cm; NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves and so on.
The numbers obtained tell us that temperature ranges are required for obtaining radiations in different parts of an electromagnetic spectrum. As the wavelength decreases, the corresponding temperature increases.

Q4: Given below are some famous numbers associated with electromagnetic radiations in different contexts in physics. State the part of the electromagnetic spectrum to which each belongs.
(a) 21 cm (wavelength emitted by atomic hydrogen in interstellar space).
(b) 1057 MHz (frequency of radiation arising from two close energy levels in hydrogen; known as Lamb shift).
(c) 2.7 K [temperature associated with the isotropic radiation filling all space-thought to be a relic of the ‘big-bang’ origin of the universe].
(d) 5890 Å - 5896 Å [double lines of sodium]
(e) 14.4 keV [energy of a particular transition in 57Fe nucleus associated with a famous high resolution spectroscopic method
(Mössbauer spectroscopy)].
Ans:  (a) Radio waves; it belongs to the short wavelength end of the electromagnetic spectrum.
(b) Radio waves; it belongs to the short wavelength end.
(c) Temperature, T = 2.7 °K
λm is given by Planck’s law as:
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
This wavelength corresponds to microwaves.
(d) This is the yellow light of the visible spectrum.
(e) Transition energy is given by the relation,
E =
Where,
h = Planck’s constant = 6.6 × 10−34 Js
ν = Frequency of radiation
Energy, E = 14.4 K eV
NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves
This corresponds to X-rays.

Q5: Answer the following questions:
(a) Long distance radio broadcasts use short-wave bands. Why?
(b) It is necessary to use satellites for long distance TV transmission. Why?
(c) Optical and radio telescopes are built on the ground but X-ray astronomy is possible only from satellites orbiting the earth. Why?
(d) The small ozone layer on top of the stratosphere is crucial for human survival. Why?
(e) If the earth did not have an atmosphere, would its average surface temperature be higher or lower than what it is now?
(f) Some scientists have predicted that a global nuclear war on the earth would be followed by a severe ‘nuclear winter’ with a devastating effect on life on earth. What might be the basis of this prediction?
Ans:  (a) Long distance radio broadcasts use shortwave bands because only these bands can be refracted by the ionosphere.
(b) It is necessary to use satellites for long distance TV transmissions because television signals are of high frequencies and high energies. Thus, these signals are not reflected by the ionosphere. Hence, satellites are helpful in reflecting TV signals. Also, they help in long distance TV transmissions.
(c) With reference to X-ray astronomy, X-rays are absorbed by the atmosphere. However, visible and radio waves can penetrate it. Hence, optical and radio telescopes are built on the ground, while X-ray astronomy is possible only with the help of satellites orbiting the Earth.
(d) The small ozone layer on the top of the atmosphere is crucial for human survival because it absorbs harmful ultraviolet radiations present in sunlight and prevents it from reaching the Earth’s surface.
(e) In the absence of an atmosphere, there would be no greenhouse effect on the surface of the Earth. As a result, the temperature of the Earth would decrease rapidly, making it chilly and difficult for human survival.
(f) A global nuclear war on the surface of the Earth would have disastrous consequences. Post-nuclear war, the Earth will experience severe winter as the war will produce clouds of smoke that would cover maximum parts of the sky, thereby preventing solar light form reaching the atmosphere. Also, it will lead to the depletion of the ozone layer.

The document NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves is a part of the NEET Course Physics Class 12.
All you need of NEET at this link: NEET
105 videos|426 docs|114 tests

Up next

FAQs on NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

1. What are electromagnetic waves?
Ans. Electromagnetic waves are a form of energy that consists of oscillating electric and magnetic fields. They are produced by the acceleration of charged particles and can travel through a vacuum or a medium. Examples of electromagnetic waves include radio waves, microwaves, infrared waves, visible light, ultraviolet rays, X-rays, and gamma rays.
2. How do electromagnetic waves propagate?
Ans. Electromagnetic waves propagate through the interaction of electric and magnetic fields. When an electric field changes, it creates a magnetic field, and when a magnetic field changes, it creates an electric field. This continuous exchange between electric and magnetic fields allows electromagnetic waves to propagate through space or a medium in a transverse manner, perpendicular to the direction of propagation.
3. What is the speed of electromagnetic waves in a vacuum?
Ans. In a vacuum, electromagnetic waves travel at the speed of light, which is approximately 3 x 10^8 meters per second (m/s). This is a fundamental constant of nature and denoted by the symbol 'c'. The speed of electromagnetic waves can vary when they pass through different materials, but in a vacuum, it remains constant.
4. How are electromagnetic waves classified based on their frequency and wavelength?
Ans. Electromagnetic waves are classified into a spectrum based on their frequency and wavelength. The spectrum includes radio waves, microwaves, infrared waves, visible light, ultraviolet rays, X-rays, and gamma rays. The order of the spectrum, from low frequency to high frequency, is radio waves, microwaves, infrared waves, visible light, ultraviolet rays, X-rays, and gamma rays. Similarly, the order based on wavelength is reversed, with gamma rays having the shortest wavelength and radio waves having the longest wavelength.
5. What are the applications of electromagnetic waves in everyday life?
Ans. Electromagnetic waves have numerous applications in everyday life. Some common applications include: - Radio waves are used for broadcasting and communication. - Microwaves are used for cooking food and in radar systems. - Infrared waves are used in remote controls, thermal imaging, and optical fiber communication. - Visible light is essential for vision and is used in photography, displays, and illumination. - Ultraviolet rays have applications in disinfection, tanning, and fluorescent lamps. - X-rays are used in medical imaging, security scanning, and materials testing. - Gamma rays are used in cancer treatment, sterilization, and radioactive decay studies.
105 videos|426 docs|114 tests
Download as PDF

Up next

Explore Courses for NEET exam

How to Prepare for NEET

Read our guide to prepare for NEET which is created by Toppers & the best Teachers
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

ppt

,

mock tests for examination

,

Viva Questions

,

Sample Paper

,

video lectures

,

practice quizzes

,

Previous Year Questions with Solutions

,

Extra Questions

,

Summary

,

Free

,

Important questions

,

pdf

,

Objective type Questions

,

shortcuts and tricks

,

past year papers

,

MCQs

,

NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

,

Semester Notes

,

NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

,

study material

,

NCERT Solutions Class 12 Physics Chapter 8 - Electromagnetic Waves

,

Exam

;