Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE) PDF Download

Chapter 4 

Bond Stress

Bond, Anchorage, Development Length and Torsion One of the most important assumptions in the behaviour of reinforced concrete structures is that there is proper bond between concrete and reinforcement bars. When steel bars are embedded in concrete, the concrete, after setting, adheres to the surface of the bars and thus resists any force that tends to pull 0r push this bond. The intensity of this adhesive force is called bond stress. Thus the term 'bond' is used to describe the means by which slip between steel and concrete is prvented. The bond stresses are the longitudinal shearing stresses acting on the surface between the steel and concrete.

 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Figure shows two sections ab and cd, spaced dx apart of a reinforced concrete beam. Let M be the bending moment at section ab and M + dM be the bending moment at section cd.

Similarly let T and T + dT be the tensile forces developed in steel reinforcement at ab and cd respectively.
Now, M = T. jd and M + dM = (T+dT)d Hence, dM = dT. jd or
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)
The difference in the tensile force (dT) in steel bars between sections is resisted by bond stress developed in the length dx,.
Let, ζ bd = bond stress developed in concrete around the steel reinforcement.

 ∑0 = sum of the perimeters of the steel bars resisting tension.
Total surface area of bars = d× ∑0
Hence, ζ bd [d × ∑0 ]        ...(ii)

Substituting the value of dT in (i), we get,

 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

The stress ζ bd at a particular sections is called bond stress
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

where V = Shear force at any section
d = Effective depth of the section
∑0 = Sum of all perimeter of reinforcement
= n. p (φ)

where n = Number of reinforcment and φ = diamter of reinforcement

Permissible Bond Stress
As per IS 456 : 2000

 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

These value of bond stress is for plain bar in tension For deformed bar the above value should be increased by 60%.
For bar in compression the above value should be increased by 25%.

Development Length (Ld)

 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Figure shows a steel bar embedded in concrete and subjected to a tensile force T. Due to this force, there will be tendency of the bar to slip out and this tendency is resisterd by the bond stress is developed along the length. The required length, necessary to develop full resisting force, is called anchorage length in case of axial tension (or compression) and development length in the case of flexural tension, and is designated by symbol Ld.
Hence, if φ is the nominal diameter of the bar, we have
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

or Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Checking Development Lengths of Tension Bars

The computed stress ( σs ) in a reinforcement bar, at every section must be developed on both the sides of the section. This is done by providing development length Ld to both the sides of the section. Such a development length is usually available at mid-span location where positive (or sagging) BM is maximum for simply supported beams. Similarly, such a development is usually available at the intermediate support of a continuous beam where negative (or hogging) BM is maximum. Hence no special checking may be necessary in such locations. However special checking for development lengths is essential at the following:

1. At simple supports
2. At cantilever supports
3. In flexural members that have relatively short spans
4. At point of contraflexure.
5. At lap splices
6. At point of bar cutoff
7. For stirrups and transverse ties

Torsion 

Equivalent shear force

 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

  •  Nominal shear stress

 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Equivalent moment

 M = meq + mueq
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Transverse reinforcement

As per IS : 456–2000
 Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)
Also 
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)
where, 
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

Here, T = Torsional moment
Sv = Spacing the stirrup rienforcement
b1 = Centre to centre distance between cor ner bars in the direction of width
d1 = Centre to centre distance between cor ner bars in the direction of depth
b = Breadth of member
σsv = Permissible tensile stress in shear re  inforcement .

Maximum spacing for Transverse reinforcement 
(i)X1
(ii)
Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)
(iii) 300 mm When a beam is subjected to torsion, if depth of the beam is more than 450 mm or for a beam not subjected to torsion if depth of web exceeds 750 mm, then side face reinforcement equal to 0.1% of crosssectional area is equally distributed on both faces of the beam.

The document Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE) is a part of the Civil Engineering (CE) Course Civil Engineering SSC JE (Technical).
All you need of Civil Engineering (CE) at this link: Civil Engineering (CE)
2 videos|122 docs|55 tests

Top Courses for Civil Engineering (CE)

FAQs on Bond Stress - Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

1. What is bond stress?
Ans. Bond stress refers to the force per unit area acting on the bond interface between two materials, typically a concrete and reinforcing steel, in a reinforced concrete structure. It is a measure of the resistance of the bond between the two materials to resist slippage or separation.
2. Why is bond stress important in reinforced concrete structures?
Ans. Bond stress is crucial in reinforced concrete structures as it directly impacts the structural integrity and load-carrying capacity of the elements. Adequate bond stress ensures the transfer of forces between the concrete and steel, allowing them to work together effectively and resist the applied loads.
3. How is bond stress calculated?
Ans. Bond stress can be calculated using the formula: Bond Stress = Applied Load / Bond Area The applied load is the force acting on the bond interface, and the bond area is the contact area between the concrete and steel reinforcement. It is important to consider the geometry, surface condition, and material properties when determining the bond area.
4. What factors influence bond stress in reinforced concrete?
Ans. Several factors influence bond stress in reinforced concrete, including the surface condition of the reinforcement, the type and quality of the concrete mix, the presence of any corrosion or rust on the reinforcement, the degree of confinement, and the bond length. These factors collectively affect the bond strength and ultimately the bond stress.
5. How can bond stress be improved in reinforced concrete structures?
Ans. Bond stress can be improved in reinforced concrete structures by ensuring proper surface preparation of the reinforcement, such as removing any rust or corrosion. Additionally, using appropriate concrete mix design, proper compaction techniques, and providing sufficient development length can enhance bond stress. The use of mechanical anchoring devices, such as hooked bars or mechanical couplers, can also improve bond stress in specific applications.
2 videos|122 docs|55 tests
Download as PDF
Explore Courses for Civil Engineering (CE) exam

Top Courses for Civil Engineering (CE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Important questions

,

study material

,

Sample Paper

,

pdf

,

Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

,

Objective type Questions

,

video lectures

,

Free

,

shortcuts and tricks

,

ppt

,

MCQs

,

Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

,

Bond Stress | Civil Engineering SSC JE (Technical) - Civil Engineering (CE)

,

Semester Notes

,

practice quizzes

,

Exam

,

Extra Questions

,

mock tests for examination

,

past year papers

,

Viva Questions

,

Previous Year Questions with Solutions

,

Summary

;