Chemistry Exam  >  Chemistry Notes  >  Inorganic Chemistry  >  Trends in Periodic Properties- 1

Trends in Periodic Properties- 1 | Inorganic Chemistry PDF Download

Periodicity in Properties

The periodicity is the repetition of elements with similar properties after certain regular intervals when the elements are arranged in order of increasing atomic number.

  • The periodic repetition of properties is due to the recurrence of similar valence shell configurations after regular intervals. 

Periodicity in the Periodic TablePeriodicity in the Periodic Table

Atomic Size  

Atomic size is the distance between the centre of the nucleus of an atom and its outermost shell.

Factors affecting Atomic Size

Number of Shells 

  • Atomic Size increases with increase in number of electronic shells. Thus atomic radius is directly proportional to number of electronic shells.
  • As n increases, size increases (n = principal of quantum number)

Nuclear Charge 


  •  As the nuclear charge increases the atomic size decreases due to increase in attractive force. Thus atomic size is inversely proportional to nuclear charge. 

Screening Effect 

  • In an atom having more electrons, particularly more electrons shell, it is observed that the inner orbits decrease the attraction between the electrons in the outer orbit and nucleus. 
  • Thus they act as screen or shield between electrons of outer orbit and nucleus. This is known as screening effect. 
  • As the screening effect increases atomic size also increases. Thus atomic radius is directly proportional to screening effect. 
  • The shield ability of inner electrons decreases in the order of s>p>d>f.

Periodic Trends in Atomic Size

In a Period (Left to Right)

  • Atomic size decreases from left to right in a period.
  • Looking at the E.C. of elements, the following observations are made:
  • The e-s enter in the same shell.
  • The number of protons is increasing from left to right with an increase in atomic number.
  • The nuclear charge is increasing, so the attractive force of the nucleus on the outermost e is increasing.
  • This results in a net contraction of atomic size.

In a Group (up to down)

  • Atomic size increases from top to down in a group. 
  • The electronic configuration of elements of the same group indicates that e-s are added in the new shell in the senior atom, i.e. a new shell is added in the next higher group.
  • Although no. of protons are also increasing (i.e. increase in nuclear charge) but the net result is an increase in the size of the atom.
  • The net attractive force of the nucleus decreases down the group.

Atomic Radii 

An atomic radius is half the distance between adjacent atoms of the same element in a molecule.

  • An atom does not have any sharp boundary, so the atomic radius is determined by the indirect method in the combined state of an atom.
  • The atomic radii of atoms of compounds are classified as:
    (i) Covalent radii (in covalent molecules)
    (ii) Ionic radii (in ionic crystals)
    (iii) Van-der-wall radii (in atomic crystals)
    (iv) Metallic radii (in metals)

Variation in Atomic Radius in a Group

Trends in Periodic Properties- 1 | Inorganic Chemistry

  • In general VR(vander wall’s radius)  > MR(Metallic radius) > CR(Covalent radius)

Question for Trends in Periodic Properties- 1
Try yourself:Atomic radii ____________ along the periods.
View Solution

Ionic Radii 

The distance between the nucleus and the outermost shell of an ion is known as ionic radii.

  • A cation is smaller than the parent atom and an anion is larger than the parent atom.Trends in Periodic Properties- 1 | Inorganic Chemistry

Ionic Radii of Isoelectronic Ions 

  • Isoelectronic ions have the same number of electrons.
  • Al3+, Mg2+, Na+, Ne, F, O2 and N3 all have 10 electrons.
    All have the same configuration: 1s2 2s2 2p6 (which is the noble gas: Neon).
    Positive ions that have more protons would be smaller (more protons would pull the same number of electrons).
  • For isoelectronic species, size depends upon Z, more Z less size.
  • Size:
    (i) C+4 < B+3 < Be2+ < Li+
    (ii)  Al3+ < Mg2+ < Na+ < Ne < F < O2– < N3–

Ionisation Energy

Amount of energy required to remove the most loosely bounded electron from an isolated gaseous atom.

  • Ionisation is endothermic (endoergic) i.e. requires energy hence,Trends in Periodic Properties- 1 | Inorganic Chemistry
  • IE3 > IE2 > IE1 always. 
  • Ionization energy is also called Ionization Potential (l.P.).

Unit of Ionisation Energy 

  • lonisation energy is expressed in the units of energy, i.e. (eV) per atom; (kJ mol-1);  kcal mol-1.
  • 1 eV/atom = 1.602 x 10-16 kJ / atom = 1.602 x 10-16 x 6.02 x 1023 kJ / mol = 96.4 x10kJmol -1

Factors Affecting Ionisation Energy

(i) Size of Atom: Varies inversely

  • As the size of the atom increases, the outermost electrons are less tightly held by the nucleus.
  • As a result, it is easier to remove the e-.
  • The ionisation energy decreases with an increase in atomic size.

(ii) Nuclear Charge: Varies directly

  • As nuclear charge increases, it becomes difficult to remove the e-, so ionisation energy increases.

(iii) Screening Effect: Varies inversely

(iv) Nature of orbitals containing e-s: (Penetrating effect of e-s). 

(v) Electronic Configuration (E.C.): The atoms having stable E.C. have less tendency to lose electrons. So they have high I.E. 

  • Half filled E.C.:   N = 1s2, 2s2, 2p
  • Full filled E.C. (Noble gas configuration):   Ne = 1s2, 2s2, 2p6
  • E.C. with all e-s paired: E.g. Be = 1s2, 2s2;   Zn = 3d104s2;  Cd = 4d10 5s2;  Hg = 5d106s2

General Trend of Ionisation Energy

1. Across the Period: L → R 


  • Along period I.E. increases (with some exception) [ZeffTrends in Periodic Properties- 1 | Inorganic Chemistry­]
  • Reason:
    (a)  Nuclear Charge­ Trends in Periodic Properties- 1 | Inorganic Chemistry     
    (b)  Atomic Size Trends in Periodic Properties- 1 | Inorganic Chemistry

Trends in Periodic Properties- 1 | Inorganic Chemistry


2. Along a Group: Top to bottom  

  • Along a group I.E. decrease [Zeff constant, n Trends in Periodic Properties- 1 | Inorganic Chemistry­ ]Trends in Periodic Properties- 1 | Inorganic Chemistry
  • Reason:
    (a) Atomic size increases.
    (b) Increase in screening effect of electrons of inner shells also increase which nullify the increased Nuclear charge.

First Ionisation Energies of the ElementsFirst Ionisation Energies of the Elements

Question for Trends in Periodic Properties- 1
Try yourself:What is the trend of ionization energy?
View Solution

Conclusion

  • Maxima and minima occur at the noble gases and alkali metals respectively indicating special stability associated with the closed-shell configuration of noble gases.
  • The variation in I.E. along a series of transition metal or inner transition element is much less than that along a period of non-transition elements.
  • Half filled E.C. have higher I.E. than the next element along a period (N > O) (P > S).
  • Determination of I.E.: I.E. is the difference between the energy of a gaseous atom and that of the system, gaseous ion + free e.
    (i) Li < B< Be<C <O < N < F < Ne
    (ii) Na < Al < Mg < Si < S < P < Cl < Ar
    (iii) K < Ga < Ca < Ge < Se < As < Br < Kr
    (iv) Rb < Sr < In < Sn < Sb < Te < I < Xe
    (v) Cs < Ba < Tl < Bi < Pb < Po < At < Rn
  • I.E. variation in transition metals with dn E.C.

Trends in Periodic Properties- 1 | Inorganic Chemistry

  • Exceptions
    (i) Along a period, half-filled and fully filled have higher I.E.
      e.g. Be > B and N > O.
    (ii) Along a group, Ga > Al.
  • Properties Affected by Ionisation Energy
    (i) Metallic character: More ionisation energy means less metallic character (in a period).
    (ii) Tending to stay in which state A+1, A+2 or A+3 is stable.
The document Trends in Periodic Properties- 1 | Inorganic Chemistry is a part of the Chemistry Course Inorganic Chemistry.
All you need of Chemistry at this link: Chemistry
48 videos|92 docs|41 tests

FAQs on Trends in Periodic Properties- 1 - Inorganic Chemistry

1. What is atomic radius?
Ans. Atomic radius is the distance between the nucleus of an atom and its outermost electron. It is measured in picometers (pm) or angstroms (Å). The atomic radius generally increases as we move down the group and decreases as we move across the period in the periodic table.
2. What is the difference between atomic radius and ionic radius?
Ans. Atomic radius is the size of an atom whereas ionic radius is the size of an ion. When an atom gains or loses an electron to form an ion, its size changes due to the change in its electronic configuration. The ionic radius is usually smaller than the atomic radius of the same element because the ion has a different number of electrons.
3. How does ionization energy change across a period?
Ans. Ionization energy is the energy required to remove an electron from a neutral atom. As we move across a period in the periodic table, the ionization energy generally increases because the electrons are held more tightly by the nucleus due to the increasing nuclear charge. Therefore, it becomes more difficult to remove an electron.
4. What is the trend in atomic size down a group?
Ans. The atomic size generally increases down a group in the periodic table. This is because the number of electron shells increases down a group, which leads to an increase in the distance between the nucleus and the outermost electrons. As a result, the atomic radius increases down the group.
5. How do ionic radii of cations and anions differ?
Ans. Cations are formed when an atom loses electrons, resulting in a decrease in the ionic radius compared to the atomic radius of the same element. Anions are formed when an atom gains electrons, resulting in an increase in the ionic radius compared to the atomic radius of the same element. Therefore, the ionic radii of cations and anions differ due to the change in the number of electrons.
48 videos|92 docs|41 tests
Download as PDF
Explore Courses for Chemistry exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Objective type Questions

,

study material

,

mock tests for examination

,

Trends in Periodic Properties- 1 | Inorganic Chemistry

,

Previous Year Questions with Solutions

,

Exam

,

past year papers

,

video lectures

,

Viva Questions

,

ppt

,

Extra Questions

,

Important questions

,

Free

,

Trends in Periodic Properties- 1 | Inorganic Chemistry

,

MCQs

,

Trends in Periodic Properties- 1 | Inorganic Chemistry

,

pdf

,

Summary

,

shortcuts and tricks

,

Sample Paper

,

practice quizzes

,

Semester Notes

;