Computer Science Engineering (CSE) Exam  >  Computer Science Engineering (CSE) Notes  >  Minimum and Maximum Mode 8086 System

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE) PDF Download

Minimum Mode 8086 System

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

Minimum mode 8086 system

 

  • In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum mode by strapping its MN/MX pin to logic 1.
  • In this mode, all the control signals are given out by the microprocessor chip itself. There is a single microprocessor in the minimum mode system.
  • The remaining components in the system are latches, transceivers, clock generator, memory and I/O devices. Some type of chip selection logic may be required for selecting memory or I/O devices, depending upon the address map of the system.
  • Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are used for separating the valid address from the multiplexed address/data signals and are controlled by the ALE signal generated by 8086.
  • Transceivers are the bidirectional buffers and some times they are called as data amplifiers. They are required to separate the valid data from the time multiplexed address/data signals.
  • They are controlled by two signals namely, DEN and DT/R.
  • The DEN signal indicates the direction of data, i.e. from or to the processor. The system contains memory for the monitor and users program storage.
  • Usually, EPROM is used for monitor storage, while RAM for users program storage. A system may contain I/O devices.

Write Cycle Timing Diagram for Minimum Mode

  • The working of the minimum mode configuration system can be better described in terms of the timing diagrams rather than qualitatively describing the operations.
  • The opcode fetch and read cycles are similar. Hence the timing diagram can be categorized in two parts, the first is the timing diagram for read cycle and the second is the timing diagram for write cycle. 

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)  

  • The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also M / IO signal. During the negative going edge of this signal, the valid address is latched on the local bus.
  • The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO signal indicates a memory or I/O operation.
  • At T2, the address is removed from the local bus and is sent to the output. The bus is then tristated. The read (RD) control signal is also activated in T2.
  • The read (RD) signal causes the address device to enable its data bus drivers. After RD goes low, the valid data is available on the data bus.
  • The addressed device will drive the READY line high. When the processor returns the read signal to high level, the addressed device will again tristate its bus drivers.
  • A write cycle also begins with the assertion of ALE and the emission of the address. The M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after sending the address in T1, the processor sends the data to be written to the addressed location.
  • The data remains on the bus until middle of T4 state. The WR becomes active at the beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).
  • The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O word to be read or write.
  • The M/IO, RD and WR signals indicate the type of data transfer as specified in table below. 

Bus Request and Bus Grant Timings in Minimum Mode System of 8086

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

  • Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse.

If it is received active by the processor before T4 of the previous cycle or during T1 state of the current cycle, the CPU activates HLDA in the next clock cycle and for succeeding bus cycles, the bus will be given to another requesting master.

The control of the bus is not regained by the processor until the requesting master does not drop the HOLD pin low. When the request is dropped by the requesting master, the HLDA is dropped by the processor at the trailing edge of the next clock.


Maximum Mode 8086 System

  • In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.
  • In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus controller derives the control signal using this status information.
  • In the maximum mode, there  may be more than one microprocessor  in the system configuration.
  • The components in the system are same as in the minimum mode system.
  • The basic function of the bus controller chip IC8288 is to derive control signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by the processor on the status lines.
  • The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are driven by CPU. 

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)  

  • It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC. The AEN, IOB and CEN pins are especially useful for multiprocessor systems.
  • AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of the MCE/PDEN output depends upon the status of the IOB pin.
  • If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as peripheral data enable used in the multiple bus configurations.
  • INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an interrupting device.
  • IORC, IOWC are I/O read command and I/O write command signals respectively.
  • These signals enable an IO interface to read or write the data from or to the address port.
  • The MRDC, MWTC are memory read command and memory write command signals respectively and may be used as memory read or write signals.
  • All these command signals instructs the memory to accept or send data from or to the bus.
  • For both of these write command signals, the advanced signals namely AIOWC and AMWTC are available.
  • Here the only difference between in timing diagram between minimum mode and maximum mode is the status signals used and the available control and advanced command signals.
  • R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as on the ALE and apply a required signal to its DT / R pin during T1.
  • In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate MRDC or IORC. These signals are activated until T4. For an output, the AMWC or AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.
  • The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.
  • If reader input is not activated before T3, wait state will be inserted between T3 and T4. 

Memory Read Timing Diagram in Maximum Mode of 8086 

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

Memory Write Timing in Maximum mode of 8086

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

RQ/GT Timings in Maximum Mode

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

  • The request/grant response sequence contains a series of three pulses. The request/grant pins are checked at each rising pulse of clock input.
  • When a request is  detected and if the condition for HOLD request is  satisfied, the processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1 (next) state.
  • When the requesting master receives this pulse, it accepts the control of the bus, it sends a release pulse to the processor using RQ/GT pin.
The document Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE) is a part of Computer Science Engineering (CSE) category.
All you need of Computer Science Engineering (CSE) at this link: Computer Science Engineering (CSE)

Top Courses for Computer Science Engineering (CSE)

FAQs on Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

1. What is the minimum mode in 8086 system?
Ans. The minimum mode is a system where the 8086 microprocessor is used with minimum support chips. In this mode, the 8086 processor is connected to the external devices such as memory and I/O directly.
2. What is the maximum mode in 8086 system?
Ans. The maximum mode is a system where the 8086 microprocessor is used with additional support chips. In this mode, the 8086 processor is connected to the external devices such as memory and I/O through the support chips like 8288 bus controller, 8284 clock generator, and 8289 bus arbiter.
3. What is the difference between minimum mode and maximum mode in the 8086 system?
Ans. The main difference between minimum mode and maximum mode in the 8086 system is that in minimum mode, the 8086 processor is directly connected to the external devices such as memory and I/O, while in maximum mode, the 8086 processor is connected to the external devices through the support chips like 8288 bus controller, 8284 clock generator, and 8289 bus arbiter.
4. What are the advantages of the maximum mode in the 8086 system?
Ans. The advantages of the maximum mode in the 8086 system are as follows: 1. It allows the 8086 processor to access more memory and I/O devices. 2. It provides better control over the bus timing and bus arbitration. 3. It allows multiple processors to share the same bus.
5. What are the disadvantages of the minimum mode in the 8086 system?
Ans. The disadvantages of the minimum mode in the 8086 system are as follows: 1. It does not provide better control over the bus timing and bus arbitration. 2. It does not allow the 8086 processor to access more memory and I/O devices. 3. It does not allow multiple processors to share the same bus.
Download as PDF
Explore Courses for Computer Science Engineering (CSE) exam

Top Courses for Computer Science Engineering (CSE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Free

,

mock tests for examination

,

Objective type Questions

,

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

,

Previous Year Questions with Solutions

,

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

,

Semester Notes

,

Exam

,

Summary

,

pdf

,

video lectures

,

ppt

,

Sample Paper

,

past year papers

,

Extra Questions

,

MCQs

,

Important questions

,

practice quizzes

,

Minimum and Maximum Mode 8086 System - Computer Science Engineering (CSE)

,

Viva Questions

,

shortcuts and tricks

,

study material

;