Test: Functions - JEE MCQ

# Test: Functions - JEE MCQ

Test Description

## 20 Questions MCQ Test - Test: Functions

Test: Functions for JEE 2024 is part of JEE preparation. The Test: Functions questions and answers have been prepared according to the JEE exam syllabus.The Test: Functions MCQs are made for JEE 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Functions below.
Solutions of Test: Functions questions in English are available as part of our course for JEE & Test: Functions solutions in Hindi for JEE course. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free. Attempt Test: Functions | 20 questions in 35 minutes | Mock test for JEE preparation | Free important questions MCQ to study for JEE Exam | Download free PDF with solutions
Test: Functions - Question 1

### Let f be a function such that f(mn) = f(m) f(n) for every positive integers m and n. If f(1), f(2) and f(3) are positive integers, f(1) < f(2), and f(24) = 54, then f(18) equals (2019)

Detailed Solution for Test: Functions - Question 1

Let the value of f(2) and f(3) be ‘x’ and ‘y’ respectively,

⇒ f(24) = f(8).f(3) = f(2).f(2).f(2).f(3) = 54

⇒ x3y = 54

⇒ x3y = 27 × 2

⇒ x3y = 33 × 2

On comparing, x = 3 and y = 2

⇒ f(2) = 3

⇒ f(3) = 2

⇒ f(18) = f(9).f(2) = f(3).f(3).f(2)

⇒ f(18) = 2 × 2 × 3

⇒ f(18) = 12

The value of f(18) equals 12

Test: Functions - Question 2

### Let f(x) = min{2x2, 52 − 5x}, where x is any positive real number. Then the maximum possible value of f(x) is (2018)

Detailed Solution for Test: Functions - Question 2

The maximum value of f(x) will occur when
2x2 = 52 – 5x i.e. when 2x2 + 5x − 52 = 0
⇒ 2x2 + 13x − 8x − 52 = 0
⇒ (2x + 13) (x – 4) = 0 ⇒ x = – 13/2 or 4. But x is any positive real number. So, x = 4.
Hence, maximum value of f (x) = 2(42) = 32

 1 Crore+ students have signed up on EduRev. Have you?
Test: Functions - Question 3

### If f(x + 2) = f(x) + f(x + 1) for all positive integers x, and f(11) = 91, f(15) = 617, then f(10) equals (2018)

Detailed Solution for Test: Functions - Question 3

Calculation:

⇒ f(x + 2) = f(x) + f(x + 1)

⇒ f(15) = f(13) + f(14)

⇒ f(13) + f(14) = 617  - (1)

⇒ f(12) + f(13) = f(14) - (2)

⇒ f(11) + f(12) = f(13) - (3)

By solving,

⇒ f(12) + f(13) = 617 - f(13)   [ using (1) and  (2) ]

⇒ 2f(11) + 3f(12) = 617  [ usining (3) ]

⇒ f(12) = 145

⇒ f(12) = f(11) + f(10)

∴ f(10) = 54

Test: Functions - Question 4

The area of the closed region bounded by the equation |x| + |y| = 2 in the two-dimensional plane is

(2017)

Detailed Solution for Test: Functions - Question 4

Test: Functions - Question 5

Consider two figures A and D that are defined in the co-ordinate plane. Each figure represents the graph of a certain function, as
defined below:
A: | x | - | y | = a
D :| y | = d
If the are enclosed by A and D is O. Which of the following is a possible value of (a, d):

(2016)

Detailed Solution for Test: Functions - Question 5

The lines represented by A where a > 0 and when a < 0 are given in the following figures

The area enclosed by A and D would be zero if d < |a|. In choice (b), d = 1 and a = – 2 i.e., d < |a|.
If a > 0, then the only case when the area enclosed by A and D will be zero, is when d = 0.

Test: Functions - Question 6

If [log10 1] + [log10 2] + [log10 4] +...+ [log10 n] = n where [x] denotes the greatest integer less than or equal to x, then

(2016)

Detailed Solution for Test: Functions - Question 6

[log10 x] = 0, for any value of x ∈ {1, 2, ......9), ...(1)
Similarly [log10 x] = 1, for x ∈ {10, 11, 12 ... 99}...(2)
and [log10x] = 2, for
x ∈ {100, 101, 102, ... 999} ...(3)
Now consider, 1 ≤ n ≤ 9, then
[log101] + [log102] + [log103] ... [log10 n] = 0 (i.e., ≠ n)
Hence the expression given in the question cannot be satisfied.
Now consider, 10 ≤ n ≤ 99, then [log101] + [log102] ... [log10n]
From (1) and (2), the above expression becomes (0 + 0 ... 9 times) + (1 + 1 + ... (n – 9) times) = n – 9
Using the same approach, for
100 ≤  n ≤ 999, [log 101] + [log102] ... [log 10n] = 90 + 2(n – 99)
If can be seen that, only for the third case i.e., 100 ≤  n ≤  999, can the expression given in the question be satisfied.
Hence 90 + 2(n – 99) =  n
⇒ n = 198 – 90 = 108
∴ 107 ≤ n < 111.

Test: Functions - Question 7

The coordinates of two diagonally opposite vertices of a rectangle are (4, 3) and (-4,-3). Find the number of such rectangle(s), if the other two vertices also have integral coordinates.

(2015)

Detailed Solution for Test: Functions - Question 7

Other two vertices will make two right angled triangles with AB as the common hypotenuse. So they must lie on the circle with AB as the diameter and O as the centre. Radius of that circle will be 5 units.
There will be 5 such pairs in which both the coordinates are integers.
[(5, 0), (–5, 0), [(4, 3), (4, – 3)],
[(–3, 4), (3, –4)] [(–3, –4), (3, 4)] and [(0, 5), (0, –5)]

Test: Functions - Question 8

‘f’ is a real function such that f(x + y) = f(xy) for all real values of x and y. If f(–7) = 7, then the value of f(–49) + f(49) is

(2014)

Detailed Solution for Test: Functions - Question 8

Let us assume f(0) = K, where 'K' is a constant.
Then, f(0 + y) = f(0.y) = f(0) = K
and  f(x + 0) = f(x.0) = f(0) = K.
This proves that the function is a constant function.
Thus, the value of
f(–49) = f (49) = 7
Hence, f(–49) + f(49) = 14.

Test: Functions - Question 9

Let f(x) = ax2 + bx + c, where a, b and c are real numbers and a ≠ 0. If f(x) attains its maximum value at x = 2, then what is the sum of the roots of f(x) = 0?

(2013)

Detailed Solution for Test: Functions - Question 9

The sum of the roots of ax2 + bx + c = 0 is -b/a
By differentiating we get 2ax + b = 0
ax2 + bx + c attains its maximum value at x = -b/2a
∴ -b/2a = 2 ⇒ -b/a = 4
Hence, the sum of the roots = 4.

Test: Functions - Question 10

If f(x) = (secx + cosecx)(tanx - cotx) and π/4 < x < π/2, then f(x) lies in the range of

(2013)

Detailed Solution for Test: Functions - Question 10

Convert into sine form this is a increasing function

Hence, f(x) lies in the range of (0, ∞)

Test: Functions - Question 11

At how many points do the graphs of y = 1/x and y = x2 – 4 intersect each other?

(2013)

Detailed Solution for Test: Functions - Question 11

The graphs of the two functions are shown below: If a > 0 in any parabolic function then parabola open up side

From the above figure, it is obvious that the graphs of the two functions intersect at three points.

Test: Functions - Question 12

A function F(n) is defined as F(n - 1) = 1/(2 - F(n)) for all natural numbers ‘n’. If F(1) = 2, then what is the value of [F(1)] + [F(2)] +…………+ [F(50)]?
(Here, [x] is equal to the greatest integer less than or equal to ‘x’)

(2012)

Detailed Solution for Test: Functions - Question 12

Given that

Similarly, we can find the values of F(3), F (4), F (5) as  respectively..

From this we can say that every term except [F(1)], of the series [F(1)] + [F (2)] + .... + [F (50)] is equal to 1 as for 'n' > 0, F (n) lies between 1 and 2.
Therefore, [F (1)] + [F (2)] + .... +  [F (50)] = 51.
Hence, option (a) is the correct choice.

Test: Functions - Question 13

A function f(x) is defined for real values of x as:

What is the domain of f(x)?

(2012)

Detailed Solution for Test: Functions - Question 13

Base of the logarithmic function 5 – |x| > 0 and 5 – |x| ≠ 1
So, x ∈ (–5, –4) ∪ (–4, 4) ∪ (4, 5) ...(i)
Also, (x–1) (x–2) (x–4) must be greater than zero as well
So, x ∈ (1, 2) ∪ (4, ∞) ...(ii)
Combining (i) and (ii) : x ∈ (1, 2) ∪ (4, 5)

Test: Functions - Question 14

Let f be an injective map with domain{x, y, z} and range {1, 2, 3} such that exactly one of the following statements is correct and the remaining are false. f(x) = 1, f(y) ≠ 1, f(z) ≠ 2. The value of f –1(1) is

(2011)

Detailed Solution for Test: Functions - Question 14

There are following three cases arise :
Case (I) :
When f (x ) = 1, is correct
then f (y ) = 1 and f (z ) = 2

clearly the mapping f is not injective (i.e., not one-one) Hence this case is not possible.
Case (II) :
When f (y) ≠ 1, is correct
then f (x) ≠ 1 and f (z) = 2
Hence z mapped to 2 but x and y or mapped to 2 or 3 or one of them mapped to 2 and the other mapped to 3.

Clearly in all the above 4 sub-cases, we see that the mapping f is not injective (i.e. not one-one). Hence, this case is not possible.
Case (III) :
If f (z) ≠ 2, is correct
then f(x) ≠  1 and f (y) =1
Hence y mapped 1 but x mapped 2 or 3
Whereas y mapped 1 or 3.
The possible four mapping are as follows :

Clearly in sub case (c), the mapping is injective (i.e., one-one). Hence this case is possible and f -1 (1) = y

Test: Functions - Question 15

The shaded portion of figure shows the graph of which of the following?

(2011)

Detailed Solution for Test: Functions - Question 15

Each of the answer choices in the form of the product of two factors on the left and a “≥ 0” or “ ≤ 0” on the right.
The product will be negative when the two factors have opposite signs, and it will be positive when the factors have the same sign. Choice (a), for example, has a “≥0”, so you’ll be looking for other factors to have the same sign.

The graph of x ≤ 0 and y ≤ 2x looks like this.

Together, they make the graph in the figure.

Test: Functions - Question 16

When ‘2’ is added to each of the three roots of x3 – Ax2 + Bx – C = 0, we get the roots of x3 + Px2 + Qx – 18 = 0. A, B, C, P and Qare all non-zero real numbers. What is the value of (4A + 2B + C)?

(2011)

Detailed Solution for Test: Functions - Question 16

Let the roots of the equation x3 – Ax2 + Bx – C = 0 be α, β, γ respectively.
So the roots of x3 + Px2 + Qx – 18 = 0 will be α + 2, β + 2, γ + 2.
(α +2)(β +2)(γ +2) = 18
⇒ 4(α + β + γ) + 2 (αβ + βγ +  γα) + αβγ + 8 =18
⇒ 4A + 2B + C = 10

Test: Functions - Question 17

If three positive real numbers a, b and c (c > a) are in Harmonic Progression, then log (a + c) + log (a – 2b + c) is equal to:

(2010)

Detailed Solution for Test: Functions - Question 17

Since a, b, c are in H.P.

Now log (a + c) + log (a – 2b + c)
= log [(a + c){(a + c) – 2b}]
= log [(a + c)2 – 2b (a + c)]
= log [(a + c)2 – 2 × 2ac]
= log (a – c)2 or log (c – a)2
= 2 log (a – c) or 2 log (c – a)
∴ log (a + c) + log (a – 2b + c) = 2 log (c – a)

Test: Functions - Question 18

There are three coplanar parallel lines. If any p points are taken on each of the lines, then find the maximum number of triangles with the vertices of these points.

(2010)

Detailed Solution for Test: Functions - Question 18

The number of triangles with vertices on different lines
= PC× PC1 x PC= p3
The number of triangles with 2 vertices on one line and the third vertex on any one of the other two lines

∴ the required number of triangles = P3 + 3P2(P - 1)
= 4p3 – 3p2 = p2 (4p – 3)
(The work “maximum” shows that no selection of points from each of the three lines are collinear).

Test: Functions - Question 19

If f (x + y/8, x - y/8) = xy, then f (m, n) + f (n, m) = 0

(2010)

Detailed Solution for Test: Functions - Question 19

Test: Functions - Question 20

If mxm – nxn = 0, then what is the value of  in terms of xn ?

(2010)

Detailed Solution for Test: Functions - Question 20

mxm = nxn