NEET Exam  >  NEET Tests  >  Case Based Questions Test: Oscillations - NEET MCQ

Case Based Questions Test: Oscillations - NEET MCQ


Test Description

10 Questions MCQ Test - Case Based Questions Test: Oscillations

Case Based Questions Test: Oscillations for NEET 2024 is part of NEET preparation. The Case Based Questions Test: Oscillations questions and answers have been prepared according to the NEET exam syllabus.The Case Based Questions Test: Oscillations MCQs are made for NEET 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Case Based Questions Test: Oscillations below.
Solutions of Case Based Questions Test: Oscillations questions in English are available as part of our course for NEET & Case Based Questions Test: Oscillations solutions in Hindi for NEET course. Download more important topics, notes, lectures and mock test series for NEET Exam by signing up for free. Attempt Case Based Questions Test: Oscillations | 10 questions in 20 minutes | Mock test for NEET preparation | Free important questions MCQ to study for NEET Exam | Download free PDF with solutions
Case Based Questions Test: Oscillations - Question 1

Attempt All sub parts from each question.

Galileo’s Isochronous Pendulum: Galileo observed a lamp swinging from ceiling at Pisa cathedral ceiling. He was the first scientist to observe how long it took any object suspended from a rope or chain (a pendulum) to swing back and forth. There were no wrist watches at that time, so Galileo used his own pulse as a time measurement. Galileo observed that no matter how big the swings were, as in when the lamp was first swung, to how small the swings were as the lamp returned to a standstill, the time it took for each swing to complete was exactly the same. So, he concluded that the oscillations are isochronous. Anyhow, it was proved by advanced experimentation that the isochronism of simple pendulum is correct within 1% under the 30° of amplitude. It is confirmed that the period changes less than 1% until the amplitude is 30°. On the other hand, the period increased by more than 10% when the amplitude became larger than 80°. At the end of his life he devised a scheme for using a pendulum to regulate a mechanical clock. However, the first reliable pendulum clock was only demonstrated by Huygens 15 years after Galileo's death.

Q. Who first observed the time period of a pendulum?

Detailed Solution for Case Based Questions Test: Oscillations - Question 1
Galileo observed a lamp swinging from ceiling at Pisa cathedral ceiling. He was the first scientist to observe how long it took any object suspended from a rope or chain (a pendulum) to swing back and forth.
Case Based Questions Test: Oscillations - Question 2

Attempt All sub parts from each question.

Galileo’s Isochronous Pendulum: Galileo observed a lamp swinging from ceiling at Pisa cathedral ceiling. He was the first scientist to observe how long it took any object suspended from a rope or chain (a pendulum) to swing back and forth. There were no wrist watches at that time, so Galileo used his own pulse as a time measurement. Galileo observed that no matter how big the swings were, as in when the lamp was first swung, to how small the swings were as the lamp returned to a standstill, the time it took for each swing to complete was exactly the same. So, he concluded that the oscillations are isochronous. Anyhow, it was proved by advanced experimentation that the isochronism of simple pendulum is correct within 1% under the 30° of amplitude. It is confirmed that the period changes less than 1% until the amplitude is 30°. On the other hand, the period increased by more than 10% when the amplitude became larger than 80°. At the end of his life he devised a scheme for using a pendulum to regulate a mechanical clock. However, the first reliable pendulum clock was only demonstrated by Huygens 15 years after Galileo's death.

Q. Galileo observed that the time period of the pendulum

Detailed Solution for Case Based Questions Test: Oscillations - Question 2
Galileo observed that no matter how big the swings were, as in when the lamp was first swung, to how small the swings were as the lamp returned to a standstill, the time it took for each swing to complete was exactly the same.
1 Crore+ students have signed up on EduRev. Have you? Download the App
Case Based Questions Test: Oscillations - Question 3

Attempt All sub parts from each question.

Galileo’s Isochronous Pendulum: Galileo observed a lamp swinging from ceiling at Pisa cathedral ceiling. He was the first scientist to observe how long it took any object suspended from a rope or chain (a pendulum) to swing back and forth. There were no wrist watches at that time, so Galileo used his own pulse as a time measurement. Galileo observed that no matter how big the swings were, as in when the lamp was first swung, to how small the swings were as the lamp returned to a standstill, the time it took for each swing to complete was exactly the same. So, he concluded that the oscillations are isochronous. Anyhow, it was proved by advanced experimentation that the isochronism of simple pendulum is correct within 1% under the 30° of amplitude. It is confirmed that the period changes less than 1% until the amplitude is 30°. On the other hand, the period increased by more than 10% when the amplitude became larger than 80°. At the end of his life he devised a scheme for using a pendulum to regulate a mechanical clock. However, the first reliable pendulum clock was only demonstrated by Huygens 15 years after Galileo's death.

Q. Isochronism of simple pendulum is within acceptable limit as long as the amplitude is under

Detailed Solution for Case Based Questions Test: Oscillations - Question 3
Anyhow, it was proved by advanced experimentation that the isochronism of simple pendulum is correct within 1% under the 30° of amplitude. It is confirmed that the period changes less than 1% until the amplitude is 30°. On the other hand, the period increased by more than 10% when the amplitude became larger than 80°.
Case Based Questions Test: Oscillations - Question 4

Attempt All sub parts from each question.

Galileo’s Isochronous Pendulum: Galileo observed a lamp swinging from ceiling at Pisa cathedral ceiling. He was the first scientist to observe how long it took any object suspended from a rope or chain (a pendulum) to swing back and forth. There were no wrist watches at that time, so Galileo used his own pulse as a time measurement. Galileo observed that no matter how big the swings were, as in when the lamp was first swung, to how small the swings were as the lamp returned to a standstill, the time it took for each swing to complete was exactly the same. So, he concluded that the oscillations are isochronous. Anyhow, it was proved by advanced experimentation that the isochronism of simple pendulum is correct within 1% under the 30° of amplitude. It is confirmed that the period changes less than 1% until the amplitude is 30°. On the other hand, the period increased by more than 10% when the amplitude became larger than 80°. At the end of his life he devised a scheme for using a pendulum to regulate a mechanical clock. However, the first reliable pendulum clock was only demonstrated by Huygens 15 years after Galileo's death.

Q. First reliable pendulum clock was only demonstrated by

Detailed Solution for Case Based Questions Test: Oscillations - Question 4
The first reliable pendulum clock was only demonstrated by Huygens 15 years after Galileo's death.
Case Based Questions Test: Oscillations - Question 5

Attempt All sub parts from each question.

Galileo’s Isochronous Pendulum: Galileo observed a lamp swinging from ceiling at Pisa cathedral ceiling. He was the first scientist to observe how long it took any object suspended from a rope or chain (a pendulum) to swing back and forth. There were no wrist watches at that time, so Galileo used his own pulse as a time measurement. Galileo observed that no matter how big the swings were, as in when the lamp was first swung, to how small the swings were as the lamp returned to a standstill, the time it took for each swing to complete was exactly the same. So, he concluded that the oscillations are isochronous. Anyhow, it was proved by advanced experimentation that the isochronism of simple pendulum is correct within 1% under the 30° of amplitude. It is confirmed that the period changes less than 1% until the amplitude is 30°. On the other hand, the period increased by more than 10% when the amplitude became larger than 80°. At the end of his life he devised a scheme for using a pendulum to regulate a mechanical clock. However, the first reliable pendulum clock was only demonstrated by Huygens 15 years after Galileo's death.

Q. How the time period of a pendulum was measured in the beginning of 16th century?

Detailed Solution for Case Based Questions Test: Oscillations - Question 5
Since no watches were available at that time, Galileo used his own pulse as a time measurement.
Case Based Questions Test: Oscillations - Question 6

Attempt All sub parts from each question.

Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.

Methods of producing damping torque:

(i) Air friction damping

(ii) Fluid friction damping

(iii) Eddy current damping

Air Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.

Q. Damping is required to be provided to the moving part of measuring instrument

Detailed Solution for Case Based Questions Test: Oscillations - Question 6
When an analog measuring instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required.
Case Based Questions Test: Oscillations - Question 7

Attempt All sub parts from each question.

Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.

Methods of producing damping torque:

(i) Air friction damping

(ii) Fluid friction damping

(iii) Eddy current damping

Air Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.

Q. The most efficient form of damping is

Detailed Solution for Case Based Questions Test: Oscillations - Question 7
Eddy current damping is the most efficient form of damping. Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field.
Case Based Questions Test: Oscillations - Question 8

Attempt All sub parts from each question.

Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.

Methods of producing damping torque:

(i) Air friction damping

(ii) Fluid friction damping

(iii) Eddy current damping

Air Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.

Q. When the moving system of a measuring instrument moves rapidly but smoothly to its final steady position, the instrument is said to be

Detailed Solution for Case Based Questions Test: Oscillations - Question 8
When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat.
Case Based Questions Test: Oscillations - Question 9

Attempt All sub parts from each question.

Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.

Methods of producing damping torque:

(i) Air friction damping

(ii) Fluid friction damping

(iii) Eddy current damping

Air Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.

Q. In Fluid Friction Damping the amount of damping torque

Detailed Solution for Case Based Questions Test: Oscillations - Question 9
In fluid friction damping system, a disc is attached to the moving system which is completely dipped into the oil. As the viscosity of the oil increases, the damping torque also increases.
Case Based Questions Test: Oscillations - Question 10

Attempt All sub parts from each question.

Damping: When an analog instrument is used to measure a physical parameter, a deflecting torque is applied to the moving system which is deflected from its initial position and should move steadily to the deflected position. But due to inertia, the moving system keeps on oscillating about equilibrium. To remove the oscillation of the moving system a damping torque is required. The damping torque should be of such that the pointer quickly comes to its final steady position, without overshooting. If the instrument is underdamped, the moving system will oscillate about the final steady position with a decreasing amplitude and will take some time before it comes to rest. When the moving system moves rapidly but smoothly to its final steady position, the instrument is said to be critically damped or deadbeat. If the damping torque is more than what is required for critical damping, the instrument is said to be overdamped. In an overdamped instrument, the moving system moves slowly to its final steady position in a lethargic fashion.

Methods of producing damping torque:

(i) Air friction damping

(ii) Fluid friction damping

(iii) Eddy current damping

Air Friction Damping: A light piston is attached to the moving system. This piston moves in an air chamber closed at one end. When there is an oscillation, the piston moves in and out of the chamber. When the piston moves into the chamber, the air inside is compressed and an air pressure is built up which opposes the motion of the piston and thus the moving system faces a damping torque which ultimately reduces the oscillation. Fluid Friction Damping: In this type of damping oil is used in place of air. Viscosity of the oil being greater, the damping torque is also more. A disc is attached to the moving system which is completely dipped into the oil. When the moving system oscillates, the disc moves in oil and a frictional drag is produced. This frictional drag opposes the oscillation. Eddy Current Damping: The moving system is connected to an aluminium disc which rotates in a magnetic field. Rotation in magnetic field induces an emf in it and if the path is closed, a current (known as eddy current) flows. This current interacts with the magnetic field to produce an electromagnetic torque which opposes the motion. This torque is proportional to the oscillation of the moving system. This electromagnetic torque ultimately reduces the oscillation. Air friction damping provides a very simple and cheap method of damping. The disadvantages of fluid friction damping are that it can be used only for instruments which are in vertical position. Eddy current damping is the most efficient form of damping.

Q. In the following deflection-time graphs which one is ideal for a sensitive and steady measuring instrument?

Detailed Solution for Case Based Questions Test: Oscillations - Question 10

Graph C shows the performance of a critically damped moving mechanism of a measuring instrument where the moving system moves rapidly but smoothly to its final steady position.

Information about Case Based Questions Test: Oscillations Page
In this test you can find the Exam questions for Case Based Questions Test: Oscillations solved & explained in the simplest way possible. Besides giving Questions and answers for Case Based Questions Test: Oscillations , EduRev gives you an ample number of Online tests for practice

Top Courses for NEET

Download as PDF

Top Courses for NEET