NEET Exam  >  NEET Tests  >  Test: Application of Gauss's Law (NCERT) - NEET MCQ

Test: Application of Gauss's Law (NCERT) - NEET MCQ


Test Description

10 Questions MCQ Test - Test: Application of Gauss's Law (NCERT)

Test: Application of Gauss's Law (NCERT) for NEET 2024 is part of NEET preparation. The Test: Application of Gauss's Law (NCERT) questions and answers have been prepared according to the NEET exam syllabus.The Test: Application of Gauss's Law (NCERT) MCQs are made for NEET 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Application of Gauss's Law (NCERT) below.
Solutions of Test: Application of Gauss's Law (NCERT) questions in English are available as part of our course for NEET & Test: Application of Gauss's Law (NCERT) solutions in Hindi for NEET course. Download more important topics, notes, lectures and mock test series for NEET Exam by signing up for free. Attempt Test: Application of Gauss's Law (NCERT) | 10 questions in 10 minutes | Mock test for NEET preparation | Free important questions MCQ to study for NEET Exam | Download free PDF with solutions
Test: Application of Gauss's Law (NCERT) - Question 1

Two parallel infinite line charges + λ and -λ are placed with a separation distance R in free space. Then etelectric field exactly mid - way between the two line charges is 

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 1

Electric field at point P due to line charge distribution +λ,
E =  away from +λ

Electric field at point P due to line charge distribution -λ,

E and E have same direction,

Test: Application of Gauss's Law (NCERT) - Question 2

An electric dipole consists of charges ±2.0 x 10-8C separated by a distance of 2.0 x 10-3 m. It is placed near a long line charge of linear charge density 4.0 x 10-4C m-1 as shown in the figure, such that the negative charge is at a distance of 2.0 cm from the line charge. The force acting on the dipole will be

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 2

The electric field at a distance r from the line charge of linear density λ is given by
E = λ/2πε0r
Hence, the field at the negative charge,
E
The force on the negative charge, F1 = (3.6 x 108) (2.0 x 10-8) = 7.2 N towards the line charge
Similarly, the field at the positive charge,
i.e., at r = 0.022 m is E= 3.3 x108 N -1
The force on the positive charge,
F2 = (3.3 x 108) x (2.0 x 10-8) = 6.6 N away from the line charge.
Hence, the net force on the dipole = 7.2N - 6.6N = 0.6 N towards the line charge.

1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Application of Gauss's Law (NCERT) - Question 3

Two infinite plane parallel sheets, separated by a distance d have equal and opposite uniform charge desities σ. Electric field at a point between the sheets is

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 3

Electric field, E = σ/ε0

Test: Application of Gauss's Law (NCERT) - Question 4

Two large, thin metal places are parallel and close to each other. On their faces, the plates have surface charge densities of opposite signs and of magnitude 16 x 10-22 C m-2. The electric field between the plates is

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 4

Here 

Test: Application of Gauss's Law (NCERT) - Question 5

Two large thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and magnitude 27 x 10-22C m-2. The electric field  in region II in between the plates is

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 5

The value of  in the region II, in between the plates = 3.05 x 10-10N C-1

Test: Application of Gauss's Law (NCERT) - Question 6

A charged ball B hangs from a silk thread S, which makes an angle θ with a large charged conducting sheet P as shown in the figure. The surface charge density of the sheet is proportional to

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 6


T sinθ = σq/ε0
T cosθ = mg
∴ tanθ = σq/ε0mg
∴ σ is proportional to tanθ.

Test: Application of Gauss's Law (NCERT) - Question 7

Consider a thin spherical shell of radius R consisting of uniform surface charge density σ. The electric field at a point of distance x from its centre and outside the shell is

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 7

For a thin uniformly charged spherical shell, the field points outside the shell at a distance x from the centre is

If the radius of the sphere is R, Q = σ4πR2

This is inversely proportional to square of the distance from the centre. It is as if the whole charge is concentrated at the centre.

Test: Application of Gauss's Law (NCERT) - Question 8

A non conducting sphere of radius a has a net charge +q uniformly distributed throughout its volume. A spherical conducting shell having inner and outer radii b and c and net charge −q is concentric with the sphere (see the figure).

Read the following statements
(i) The electric field at a distance r from the center of the sphere for r<a is 
(ii) The electric field at distance r for A<r<b is 0
(iii) The electric field at distance r for b<r<c is 0
(iv) The charge on the inner surface of the spherical shell is −q
(v) The charge on the outer surface of the spherical shell is +q
Which of the above statements are true?

Test: Application of Gauss's Law (NCERT) - Question 9

There is a solid sphere of radius R having uniformly distributed charge throughout it. What is the relation between electric field E and distance r from the centre (r < R)?

Test: Application of Gauss's Law (NCERT) - Question 10

An early model for an atom considered it to have a positively charged point nucleus of charge Ze, surrounded by a uniform density of negative charge upto a radius R. The atom as a whole is neutral. The electric field at a distance r from the nucleus is (r < R).

Detailed Solution for Test: Application of Gauss's Law (NCERT) - Question 10

Charge on nucleus is =+Ze
total negative charge =−Ze(∵ atoms is electrical neutral)
Negative charge density, ρ= charge/volume = 

Consider a Gaussian surface with radius r
By Gauss's theorem

Charge enclosed by Gaussian surface
 Using (i)
From (ii),

Information about Test: Application of Gauss's Law (NCERT) Page
In this test you can find the Exam questions for Test: Application of Gauss's Law (NCERT) solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Application of Gauss's Law (NCERT), EduRev gives you an ample number of Online tests for practice

Top Courses for NEET

Download as PDF

Top Courses for NEET