Class 10 Exam  >  Class 10 Tests  >  Math Olympiad Test: Trigonometry- 4 - Class 10 MCQ

Math Olympiad Test: Trigonometry- 4 - Class 10 MCQ


Test Description

10 Questions MCQ Test - Math Olympiad Test: Trigonometry- 4

Math Olympiad Test: Trigonometry- 4 for Class 10 2024 is part of Class 10 preparation. The Math Olympiad Test: Trigonometry- 4 questions and answers have been prepared according to the Class 10 exam syllabus.The Math Olympiad Test: Trigonometry- 4 MCQs are made for Class 10 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Math Olympiad Test: Trigonometry- 4 below.
Solutions of Math Olympiad Test: Trigonometry- 4 questions in English are available as part of our course for Class 10 & Math Olympiad Test: Trigonometry- 4 solutions in Hindi for Class 10 course. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free. Attempt Math Olympiad Test: Trigonometry- 4 | 10 questions in 10 minutes | Mock test for Class 10 preparation | Free important questions MCQ to study for Class 10 Exam | Download free PDF with solutions
Math Olympiad Test: Trigonometry- 4 - Question 1

If X sin3θ + Y cos3θ = sinθ cosθ and Xsinθ = Ycosθ, then 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 1

X sin3θ + Y cos3θ = sinθ cosθ ... (i)
X sinθ = Y cosθ ... (ii)
Using (ii) in (i), we get
⇒ Y cosqsin2θ + Y cos3θ = sinθcosθ
⇒ Y sin2θ + Y cos2θ = sinθ ⇒ Y = sinθ
∴ X sinθ = sinθ × cosθ ⇒ X = cosθ
∴ X2 + Y2 = 1

Math Olympiad Test: Trigonometry- 4 - Question 2

If  then _________.

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 2

 ... (i)
 ... (ii)
Squaring and adding (i) and (ii), we get
 

1 Crore+ students have signed up on EduRev. Have you? Download the App
Math Olympiad Test: Trigonometry- 4 - Question 3

If sin x + sin2x = 1, then cos8 x + 2cos6x + cos4x =_____.

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 3

sinx + sin2x = 1 (Given)
⇒ sinx = 1 – sin2 x ⇒ sinx = cos2 x
Now, cos8x + 2 cos6x + cos4x = sin4x + 2 sin3x + sin2x
= (sin2x + sinx)2 = 1 [∵ (sinx + sin2x) = 1]

Math Olympiad Test: Trigonometry- 4 - Question 4

If cotθ = 15/8, then evaluate 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 4



Math Olympiad Test: Trigonometry- 4 - Question 5

If cosecθ – sinθ = l and sec θ– cosθ = m, then l2m2(l2 + m2 + 3) = ________ .

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 5

We have, l2m2 (l2 + m2 + 3)
= (cosecθ – sinθ)2 (secθ – cosθ)2 {(cosecθ – sinθ)2 + (secθ – cosθ)2 + 3}



= cos6θ + sin6θ + 3 cos2θsin2θ
= {(cos2θ)3 + (sin2θ)3 + 3 cos2θsin2θ
= {(cos2θ + sin2θ)3 – 3 cos2θ sin2θ (cos2θ + sin2θ)} + 3 sin2θcos2θ
= {1 – 3 cos2 sin2θ} + 3 cos2θ sin2θ = 1

Math Olympiad Test: Trigonometry- 4 - Question 6

In a ΔABC, it is given that ∠C = 90° and tan A = 1/√3, find the value of  (sinA cosB + cosA sinB).

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 6

Consider ΔABC in which ∠C = 90° and tan A = 1/√3.
Let BC = x.
Then, AC = √3x
By Pythagoras' theorem, we have,
AB2 = AC2 + BC2 = (√3x)2 + x2 = 2x

 and sin B = 
∴ (sinA cosB + cosA sinB) 

Math Olympiad Test: Trigonometry- 4 - Question 7

Which of the following is true?
(a) cosθsinθ - 
(b) If A  and B are complementary angles, then sin A = 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 7

(a) cosθ sinθ –  
= cosθ sinθ – sin3θ cosθ – cos3θ sinθ
= cosθ sinθ – cosθ sinθ (sin2θ + cos2θ)
= cosθ sinθ – cosθ sinθ = 0
(b) A and B are complementary angles
⇒ A + B = 90° ⇒ A = 90° – B
Now, taking R.H.S. we get 


= cosB = cos (90° – A) = sinA

Math Olympiad Test: Trigonometry- 4 - Question 8

Fill in the blanks.
(i) If x =  a cos3θ , y = b sin3θ then 
(ii) If x  = a secθ cosφ, y = b secθ sinφ and z = c tanφ, then  
(iii) If cosA + cos2A = 1, then sin2A + sin4

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 8

(i) We have, x = a cos3θ and y = b sin3θ
∴ 

Hence,  cos2θ + sin2θ = 1
∴ P = 1.
(ii) We have, x = a secθcosφ
y = b secθsinφ and z = c tanθ

Hence,
(secθ cosφ)2 + (secθ sinφ)2 – (tanθ)2
= sec2θ – tan2θ = 1 + tan2θ – tan2θ = 1
∴ Q = 1.
(iii) cos A + cos2 A = 1 (Given) ...(i)
∴ cos A = 1 – cos2 A = sin2 A
∴ sin2 A + sin4 A = cos A + cos2 A = 1
∴ R = 1.

Math Olympiad Test: Trigonometry- 4 - Question 9

Find the value of  if 1 + cot2θ = 

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 9

We have, 1+ cot2θ = 
cosec2θ = 

⇒ cosecθ = 2

Now, 

Math Olympiad Test: Trigonometry- 4 - Question 10

Which of the following is CORRECT statements?
(i) 3(sinθ – cosθ)4 + 6(sinθ + cosθ)2 + 4(sin6θ + cos6θ) is independent of θ.
(ii) If cosecθ – sinθ = a3, secθ – cosθ = b3, then a2b2(a2 + b2) = 2

Detailed Solution for Math Olympiad Test: Trigonometry- 4 - Question 10

(i) We know, 3(sinθ – cosθ)4 = 3((sinθ – cosθ)2)2
= 3(12 + 4sin2θcos2θ – 4sinθcosθ) ...(i)
and, 6(sinθ + cosθ)2 = 6 + 12sinθcosθ ...(ii)
Also, 4(sin6θ + cos6θ) = 4((sin2θ)3 + (cos2θ)3) = 4(1) – 12sin2θcos2θ ...(iii)
Adding (i), (ii) and (iii), we get
3 + 12sin2θcos2θ – 12 sinθcosθ + 6+ 12 sinθ cosθ + 4 – 12 sin2θcos2θ
= 3 + 6 + 4 = 13 and 13 is independent of q.
(ii) We have,
cosecθ – sinθ = 
⇒ 
Similarly, secθ – cosθ = 

 

Information about Math Olympiad Test: Trigonometry- 4 Page
In this test you can find the Exam questions for Math Olympiad Test: Trigonometry- 4 solved & explained in the simplest way possible. Besides giving Questions and answers for Math Olympiad Test: Trigonometry- 4, EduRev gives you an ample number of Online tests for practice

Top Courses for Class 10

Download as PDF

Top Courses for Class 10