What is the time complexity of the Depth First Search (DFS) algorithm on a graph with V vertices and E edges?
1 Crore+ students have signed up on EduRev. Have you? Download the App |
Which of the following algorithms is used to find the shortest path between two vertices in a weighted graph?
Which of the following algorithms can be used to find all the connected components in an undirected graph?
What is the output of the following code?
#include <iostream>
#include <list>
int main() {
std::list<int> adjList[3];
adjList[0].push_back(1);
adjList[1].push_back(2);
adjList[2].push_back(0);
for (int i = 0; i < 3; i++) {
std::cout << "Vertex " << i << " is connected to: ";
for (int v : adjList[i]) {
std::cout << v << " ";
}
std::cout << std::endl;
}
return 0;
}
What is the output of the following code?
#include <iostream>
#include <stack>
void topologicalSortUtil(int v, bool visited[], std::stack<int>& stack) {
visited[v] = true;
for (int u : adjList[v]) {
if (!visited[u]) {
topologicalSortUtil(u, visited, stack);
}
}
stack.push(v);
}
int main() {
// Graph initialization and input omitted for brevity
std::stack<int> stack;
bool visited[V] = {false};
for (int i = 0; i < V; i++) {
if (!visited[i]) {
topologicalSortUtil(i, visited, stack);
}
}
while (!stack.empty()) {
std::cout << stack.top() << " ";
stack.pop();
}
return 0;
}
What is the output of the following code?
#include <iostream>
#include <queue>
void bfs(int v, bool visited[], std::vector<int> adjList[]) {
std::queue<int> queue;
visited[v] = true;
queue.push(v);
while (!queue.empty()) {
int u = queue.front();
queue.pop();
std::cout << u << " ";
for (int i : adjList[u]) {
if (!visited[i]) {
visited[i] = true;
queue.push(i);
}
}
}
}
int main() {
// Graph initialization and input omitted for brevity
bool visited[V] = {false};
bfs(0, visited, adjList);
return 0;
}
What is the output of the following code?
#include <iostream>
#include <vector>
int main() {
std::vector<std::vector<int>> matrix = {
{0, 1, 1},
{1, 0, 1},
{1, 1, 0}
};
int count = 0;
for (int i = 0; i < matrix.size(); i++) {
for (int j = i + 1; j < matrix[i].size(); j++) {
if (matrix[i][j] == 1) {
count++;
}
}
}
std::cout << "Number of edges in the graph: " << count << std::endl;
return 0;
}
What is the output of the following code?
#include <iostream>
#include <vector>
#include <algorithm>
int main() {
std::vector<int> arr = {2, 4, 6, 8, 10};
std::vector<int>::iterator it;
it = std::find(arr.begin(), arr.end(), 5);
if (it != arr.end()) {
std::cout << "Element found at index: " << std::distance(arr.begin(), it) << std::endl;
} else {
std::cout << "Element not found" << std::endl;
}
return 0;
}
Which of the following algorithms can be used to find the minimum spanning tree (MST) of an undirected graph?
What is the output of the following code?
```cpp
#include <iostream>
#include <queue>
void dfs(int v, bool visited[], std::vector<int> adjList[]) {
visited[v] = true;
std::cout << v << " ";
for (int i : adjList[v]) {
if (!visited[i]) {
dfs(i, visited, adjList);
}
}
}
int main() {
// Graph initialization and input omitted for brevity
bool visited[V] = {false};
dfs(0, visited, adjList);
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
int main() {
std::vector<int> arr = {5, 3, 9, 1, 7};
std::sort(arr.begin(), arr.end(), std::greater<int>());
for (int i : arr) {
std::cout << i << " ";
}
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
#include <vector>
int main() {
std::vector<int> arr = {2, 4, 6, 8, 10};
std::vector<int>::reverse_iterator it;
for (it = arr.rbegin(); it != arr.rend(); ++it) {
std::cout << *it << " ";
}
return 0;
}
```
What is the output of the following code?
```cpp
#include <iostream>
#include <stack>
void dfs(int v, bool visited[], std::vector<int> adjList[]) {
std::stack<int> stack;
visited[v] = true;
stack.push(v);
while (!stack.empty()) {
int u = stack.top();
stack.pop();
std::cout << u << " ";
for (int i : adjList[u]) {
if (!visited[i]) {
visited[i] = true;
stack.push(i);
}
}
}
}
int main() {
// Graph initialization and input omitted for brevity
bool visited[V] = {false};
dfs(0, visited, adjList);
return 0;
}
```