What is the one-day work formula for completing a task?
How does the unitary method help in solving direct variation problems?
In the context of direct variation, which statement is accurate?
How is the unitary method applied in direct variation?
If 108 kg of ration is sufficient for 18 students for 15 days, how many students can be supported by 70 kg for 25 days?
A does a job in 80 days, and B does it in 100 days. If they work together for 20 days, how long will A take to finish the remaining work alone?
What is the relationship defined by direct variation?
If 30 men can build a wall in 50 days, how many men are needed to build a wall twice as large in 75 days?
If a car travels at a speed of 60 km/h, how long will it take to cover a distance of 120 km?
If 4 workers can complete a task in 12 days, how many days will it take for 8 workers to complete the same task?
A fort has provisions for 300 men for 90 days. After 20 days, if 50 men leave, how long will the food last for the remaining men?
If the ratio of two quantities is found to be constant at 3:1 for all pairs of values, what type of variation do they exhibit?
In a certain scenario, if the number of boys increases from 50 to 60, and the amount each boy receives decreases from ₹75, what will be the new amount each boy receives?
If the total work done by 3 men in a day is 1/30 of the work, how many days will it take for them to complete the work?
When using the arrow method for inverse proportion, how are the arrows generally represented?