Correct Answer : a,c
Explanation : A = {(1+sin2θ, cos2θ, 4sin4θ) (sin2θ, 1+cos2θ, 4sin4θ) (sin2θ, cos2θ, 1+4sin4θ)}
C1 ----> C1 + C2
=> {(1+sin2θ, cos2θ, 4sin4θ) (sin2θ, 1+cos2θ, 4sin4θ) (sin2θ, cos2θ, 1+4sin4θ)} = 0
=> {(1+1, cos2θ, 4sin4θ) (1+1, 1+cos2θ, 4sin4θ) (1, cos2θ, 1+4sin4θ)} = 0
=> {(2, cos2θ, 4sin4θ) (2, 1+cos2θ, 4sin4θ) (1, cos2θ, 1+4sin4θ)} = 0
R2 : R2-->R2-R1, R3-->R3-R1
=> {(2, cos2θ, 4sin4θ) (2-2, 1+cos2θ-cos2θ, 4sin4θ-4sin4θ) (1-2, cos2θ-cos2θ, 1+4sin4θ-4sin4θ)} = 0
=> {(2, cos2θ, 4sin4θ) (0, 1, 0) (-1, 0,1)} = 0
Expand
0 + 1[2 - (-1)4sin4θ] = 0
2 + 4sin4θ = 0
Sin4θ = -2/4
sin4θ = -½
4θ = π + π/6, 2θ = 2π-π/6
4θ = 7π/6, 2θ = 11π/6
θ = 7π/24, 2θ = 11π/24