EmSAT Achieve Exam  >  EmSAT Achieve Videos  >  Physics for EmSAT Achieve  >  Video: Magnetic Field on the Axis of a Circular Current Loop

Video: Magnetic Field on the Axis of a Circular Current Loop Video Lecture | Physics for EmSAT Achieve

208 videos|230 docs|191 tests

Top Courses for EmSAT Achieve

FAQs on Video: Magnetic Field on the Axis of a Circular Current Loop Video Lecture - Physics for EmSAT Achieve

1. What is the magnetic field on the axis of a circular current loop?
Ans. The magnetic field on the axis of a circular current loop is the magnetic field produced by the loop at a point along its axis. It is given by the equation B = (μ₀IR²)/(2(R² + x²)^(3/2)), where B is the magnetic field, μ₀ is the permeability of free space, I is the current in the loop, R is the radius of the loop, and x is the distance from the center of the loop to the point along the axis.
2. How does the magnetic field on the axis of a circular current loop vary with distance?
Ans. The magnetic field on the axis of a circular current loop varies inversely with the distance from the center of the loop. As the distance increases, the magnetic field strength decreases. This relationship is described by the equation B ∝ 1/(R² + x²)^(3/2), where B is the magnetic field, R is the radius of the loop, and x is the distance from the center of the loop to the point along the axis.
3. What is the significance of the magnetic field on the axis of a circular current loop?
Ans. The magnetic field on the axis of a circular current loop is significant because it allows us to understand and predict the behavior of magnetic fields produced by current-carrying loops. It helps in various applications, such as designing magnetic sensors and understanding the interaction between magnetic fields and charged particles.
4. How does the direction of the magnetic field on the axis of a circular current loop change?
Ans. The direction of the magnetic field on the axis of a circular current loop depends on the direction of the current flow in the loop. Using the right-hand rule, if the current flows clockwise in the loop when viewed from above, the magnetic field on the axis will be in the counterclockwise direction. If the current flows counterclockwise, the magnetic field on the axis will be in the clockwise direction.
5. How is the magnetic field strength affected by the radius of the circular current loop?
Ans. The magnetic field strength on the axis of a circular current loop is directly proportional to the radius of the loop. As the radius increases, the magnetic field strength also increases. This relationship is described by the equation B ∝ R, where B is the magnetic field and R is the radius of the loop.
208 videos|230 docs|191 tests
Explore Courses for EmSAT Achieve exam
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Viva Questions

,

shortcuts and tricks

,

Video: Magnetic Field on the Axis of a Circular Current Loop Video Lecture | Physics for EmSAT Achieve

,

Semester Notes

,

practice quizzes

,

Objective type Questions

,

Video: Magnetic Field on the Axis of a Circular Current Loop Video Lecture | Physics for EmSAT Achieve

,

pdf

,

Free

,

video lectures

,

MCQs

,

Previous Year Questions with Solutions

,

mock tests for examination

,

Summary

,

study material

,

Extra Questions

,

Important questions

,

past year papers

,

Exam

,

Video: Magnetic Field on the Axis of a Circular Current Loop Video Lecture | Physics for EmSAT Achieve

,

ppt

;