All Exams  >   Class 10  >   Mathematics Class 10 (Maharashtra SSC Board)  >   All Questions

All questions of Trigonometry for Class 10 Exam

If tan A = 3/2, then the value of cos A is
  • a)
  • b)
  • c)
    2/3
  • d)
Correct answer is option 'B'. Can you explain this answer?

Tanθ = Perpendicular / Base
We are given that TanA = 3/2
On comparing
Perpendicular = 3
Base = 2
To fing hypotenuse
Hypotenuse2 = Perpendicular2 + Base2
Hypotenuse2 = 32 + 22
Hypotenuse = 
Hypotenuse = 3.6
Cosθ = Base / Hypotenuse
CosA = 2 / 3.6
Hence the value of Cos A is 2/3.6=2/√13

The value of (sin 30° + cos 30°) - (sin 60° + cos 60°) is
  • a)
    -1
  • b)
    0
  • c)
    1
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Ritu Saxena answered
sin 30° = 1/2,
cos 30°=√3/2,
sin 60°=√3/2,
cos 60°=1/2,
By putting the value of sin 30°, cos 30°, sin 60° and cos 60° in equation
We get=
(sin30°+cos30°)-(sin60°+cos60°)=(1/2+√3/2)-(√3/2+1/2)
=0

Can you explain the answer of this question below:
If 7sin2x + 3cos2x = 4 then , secx + cosecx =
  • A:
  • B:
  • C:
  • D:
The answer is a.

Gunjan Lakhani answered
7sin2x+3cosx=4
7sin2x+3(1-sin2x)=4
7sin2x+3-3sin2x=4
4sin2x=4-3
4sin2x=1
sin2x=¼
sinx=½
Cosec x=1/sinx=2
Cos x= 
Sec x= 1/cos x= 
Cosec x + sec x=2+ 

If tan θ = a/b then the value of 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Vp Classes answered
Let,angle= θ
(asinθ + bcosθ)/(asinθ - bcosθ)
Dividing both numerator and denominator from cosθ
We get,
atanθ +b/atanθ - b
= ( a.a/b + b) /(a.a/b - b) =(a²/b +b)/(a²/b - b)
=(a² + b²/a²- b²) 

Match the Columns:
  • a)
    1 - A, 2 - C, 3 - B
  • b)
    1 - B, 2 - C, 3 - A
  • c)
    1 - B, 2 - C, 3 - D 
  • d)
    1 - D , 2 - B , 3 - A
Correct answer is option 'B'. Can you explain this answer?

Krishna Iyer answered
Correct Answer :- b
Explanation : If θ is one of the acute angles in a triangle, then the sine of theta is the ratio of the opposite side to the hypotenuse, the cosine is the ratio of the adjacent side to the hypotenuse, and the tangent is the ratio of the opposite side to the adjacent side.

If 3 cot θ = 2, then the value of tan θ
  • a)
    2/3
  • b)
    3/2
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

3cot theta =2

=> cot theta = 2/3

=> 1/tan theta =2/3

=>. tan theta = 3/2

hence, the answer is tan theta =3/2

If 7sin2x + 3cos2x = 4 then , secx + cosecx =
  • a)
  • b)
  • c)
  • d)
Correct answer is 'A'. Can you explain this answer?

Naina Sharma answered
7sin2x+3cosx=4
7sin2x+3(1-sin2x)=4
7sin2x+3-3sin2x=4
4sin2x=4-3
4sin2x=1
sin2x=¼
sinx=½
Cosec x=1/sinx=2
Cos x= 
Sec x= 1/cos x= 
Cosec x + sec x=2+ 

The value of sin2 30° - cos2 30° is
  • a)
    -1/2
  • b)
  • c)
    3/2
  • d)
    2/3
Correct answer is option 'A'. Can you explain this answer?

Solution:
We know, sin 30° = 1/2 and cos 30° = √3/2.
Therefore, sin2 30° - cos2 30° = (1/2)2 - (√3/2)2
= 1/4 - 3/4
= -1/2

If cos X = a/b, then sin X is equal to:(
  • a)
    (b2-a2)/b
  • b)
    (b-a)/b
  • c)
    √(b2-a2)/b
  • d)
    √(b-a)/b
Correct answer is option 'C'. Can you explain this answer?

Kds Coaching answered
Answer: (c) √(b2-a2)/b
Explanation: cos X = a/b
By trigonometry identities, we know that:
sin2X + cos2X = 1
sin2X = 1 – cos2X = 1-(a/b)2
sin X = √(b2-a2)/b

  • a)
    0
  • b)
    -ab
  • c)
    c
  • d)
    -c2
Correct answer is option 'A'. Can you explain this answer?

Kds Coaching answered
We have,  
a cos θ – b sin θ = c  
Squaring both sides  
⇒ a²cos²θ + b²sin²θ – 2ab sin θ cos θ = c²  
⇒ a² (1 – sin²θ) + b² (1 – cos²θ) – 2ab sin θ cos θ = c²  
⇒ a² – a²sin²θ + b² – b²cos²θ – 2ab sin θ cos θ = c²  
⇒ a² + b² – c² = a²sin²θ + b²cos²θ + 2ab cos θ sin θ  
⇒ a² + b² – c² = (a sin θ + b cos θ)²  
⇒ (a sin θ + b cos θ) = ±√(a² + b² – c²)   → (1)  
So  
(a sin θ + b cos θ) – √(a² + b² – c²) = 0

 If sin A + sin2A = 1, then the value of the expression (cos2A + cos4A) is
  • a)
  • b)
    1/2 
  • c)
  • d)
    3
Correct answer is option 'A'. Can you explain this answer?

Kds Coaching answered
sin A + sin2A = 1
sin A = 1 – sin2A
sin A = cos2A {since sin2θ + cos2θ = 1}
Squaring on both sides,
sin2A = (cos2A)2
1 – cos2A = cos4A
⇒ cos2A + cos4A = 1

Chapter doubts & questions for Trigonometry - Mathematics Class 10 (Maharashtra SSC Board) 2025 is part of Class 10 exam preparation. The chapters have been prepared according to the Class 10 exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for Class 10 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Trigonometry - Mathematics Class 10 (Maharashtra SSC Board) in English & Hindi are available as part of Class 10 exam. Download more important topics, notes, lectures and mock test series for Class 10 Exam by signing up for free.

Top Courses Class 10

Related Class 10 Content