All Exams  >   RRB NTPC/ASM/CA/TA  >   Mathematics for RRB NTPC / ASM  >   All Questions

All questions of Mensuration: Volume, Surface Area & Solid Figures for RRB NTPC/ASM/CA/TA Exam

Find the volume of a cuboid whose length is 8 cm, width is 3 cm and height is 5 cm. 
  • a)
    135 cm3
  • b)
    125 cm3
  • c)
    120 cm3
  • d)
    130 cm3
Correct answer is option 'C'. Can you explain this answer?

Tanishq Joshi answered
Finding Volume of a Cuboid

Given: length = 8 cm, width = 3 cm, height = 5 cm

To find: Volume of the cuboid

Formula: Volume of a cuboid = length x width x height

Substituting the given values in the formula, we get:

Volume = 8 cm x 3 cm x 5 cm

Volume = 120 cm3

Therefore, the correct answer is option C, 120 cm3.

Practice Quiz or MCQ (Multiple Choice Questions) with solutions are available for Practice, which would help you prepare for chapter Mensuration, Class 8, Mathematics . You can practice these practice quizzes as per your speed and improvise the topic. 
Q.
Find the volume of a cuboid whose length is 8 cm, breadth 6 cm and height 3.5 cm. 
  • a)
    215 cm3
  • b)
    172 cm3
  • c)
    150 cm3
  • d)
    168 cm3
Correct answer is option 'D'. Can you explain this answer?

Ankita Shah answered
Given,
Length (l) = 8 cm
Breadth (b) = 6 cm
Height (h) = 3.5 cm

We know that the volume of a cuboid is given by the formula:
Volume = length × breadth × height

Substituting the given values, we get:
Volume = 8 cm × 6 cm × 3.5 cm
Volume = 168 cm³

Therefore, the volume of the given cuboid is 168 cm³.

Hence, the correct option is (d) 168 cm³.

Find the area of a triangle whose base is 4 cm and altitude is 6 cm.
  • a)
    10 cm2
  • b)
    14 cm2
  • c)
    16 cm2
  • d)
    12 cm2
Correct answer is option 'D'. Can you explain this answer?

Kavya Saxena answered
We know that area of triangle is equals to 1/2 base × altitude.
Here, base = 4 cm and altitude = 6 cm.
So, area = 1/2 × 4 × 6= 24 /2= 12 cm2.

PQRST is a pentagon in which all the interior angles are unequal. A circle of radius ‘r’ is inscribed in each of the vertices. Find the area of portion of circles falling inside the pentagon. 
  • a)
    πr2
  • b)
    1.5πr2
  • c)
    2πr2
  • d)
    1.25πr2
Correct answer is option 'B'. Can you explain this answer?

Preeti Khanna answered
Since neither angles nor sides are given in the question, immediately the sum of angles of pentagon should come in mind. To use it,

We know the area of the sectors of a circle is given as,
Note => The above concept is applicable for a polygon of n sides.

Choice (B) is therefore, the correct answer.

Correct Answer: 1.5πr2
 
 

PQRS is a circle and circles are drawn with PO, QO, RO and SO as diameters. Areas A and B are marked. A/B is equal to:
  • a)
    π
  • b)
    1
  • c)
    π/4
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Divey Sethi answered
Such questions are all about visualization and ability to write one area in terms of others.

Here, Let the radius of PQRS be 2r 
∴ Radius of each of the smaller circles = 2r/2 = r

Area A can be written as:
A = π (2r)2 – 4 x π(r)2 (Area of the four smaller circles) + B (since, B has been counted twice in the previous subtraction)
A = 4πr2 - 4πr2 + B
A = B
A/B = 1
Choice (B) is therefore, the correct answer.
Correct Answer: 1

 If the edge of a cube is 1 cm then which of the following is its total surface area?
  • a)
    1 cm2
  • b)
    4 cm2
  • c)
    6 cm2
  • d)
    none of these
Correct answer is option 'C'. Can you explain this answer?

Stuti Basak answered
Explanation:
To find the total surface area of a cube, we need to find the area of all its six faces and add them up. Since all the faces of a cube are identical squares, we can find the area of one face and multiply it by 6 to get the total surface area.

Given, the edge of the cube is 1 cm. Therefore, the area of one face of the cube is:

Area of square = side × side
Area of square = 1 cm × 1 cm
Area of square = 1 cm²

To find the total surface area of the cube, we need to multiply the area of one face by 6:

Total surface area of cube = 6 × area of one face
Total surface area of cube = 6 × 1 cm²
Total surface area of cube = 6 cm²

Therefore, the total surface area of the cube is 6 cm², which is option C.

The length of each side of a cube is 24 cm. The volume of the cube is equal to the volume of a cuboid. If the breadth and the height of the cuboid are 32 cm and 12 cm, respectively, then what will be the length of the cuboid?
  • a)
    36
  • b)
    27
  • c)
    16
  • d)
    20
Correct answer is option 'A'. Can you explain this answer?

C K Academy answered
Given:  
The length of each side of a cube is 24 cm.  
The breadth and the height of the cuboid are 32 cm and 12 cm, respectively.  
Concept used:  
The volume of the cube is equal to the volume of a cuboid.  
Volume of cube = a³  
Volume of cuboid = lbh  
Calculation:  
The volume of the cube is equal to the volume of a cuboid.  
⇒ 24³ = l × 32 × 12  
⇒ l = 3 × 12  
⇒ l = 36  
∴ Option 1 is the correct answer.
 

The area of a rhombus is 200 cm², and one of its diagonals is 20 cm. The length of the other diagonal is _____
  • a)
    20 cm 
  • b)
    20 m 
  • c)
    22 cm 
  • d)
    22 m 
Correct answer is option 'A'. Can you explain this answer?

Roshni Chauhan answered
Understanding the Area of a Rhombus
The area of a rhombus can be calculated using the formula:
- Area = (d1 * d2) / 2
where d1 and d2 are the lengths of the diagonals.
Given Information
- Area = 200 cm²
- One diagonal (d1) = 20 cm
Finding the Other Diagonal
To find the length of the second diagonal (d2), we can rearrange the area formula:
- 200 = (20 * d2) / 2
Now, let's solve for d2:
- First, multiply both sides by 2:
- 400 = 20 * d2
- Next, divide both sides by 20:
- d2 = 400 / 20
- d2 = 20 cm
Conclusion
The length of the other diagonal (d2) is 20 cm.
Final Answer
The correct answer is option 'A' (20 cm).
This shows that both diagonals of the rhombus can be equal, which is a special case where the rhombus is also a square.

Find the number of spheres of the maximum volume that can be accommodated in the above region.
  • a)
    324
  • b)
    323
  • c)
    162
  • d)
    161
Correct answer is option 'D'. Can you explain this answer?

Aarav Sharma answered
To find the maximum number of spheres that can be accommodated in a given region, we need to consider the volume of the region and the volume of each sphere.

Given information:
- The region is not specified, but we know it can accommodate spheres.
- The volume of each sphere is also not specified.

To solve this problem, we can follow these steps:

1. Determine the volume of the region:
- The volume of the region is not given in the question.
- Without the volume of the region, it is not possible to find the maximum number of spheres that can be accommodated.
- We need more information about the region to proceed.

2. Determine the volume of each sphere:
- The volume of each sphere is not given in the question.
- Without the volume of each sphere, it is not possible to find the maximum number of spheres that can be accommodated.
- We need more information about the spheres to proceed.

Since we do not have sufficient information about the region or the spheres, we cannot determine the maximum number of spheres that can be accommodated. Therefore, none of the provided options (a, b, c, d) can be considered as the correct answer.

To solve this problem, we would need additional information such as the volume of the region and/or the volume of each sphere. Without these details, it is not possible to find the maximum number of spheres that can be accommodated.

 An order was placed for the supply of a carpet whose breadth was 6 m and length was 1.44 times the breadth. What be the cost of a carpet whose length and breadth are 40% more and 25% more respectively than the first carpet. Given that the ratio of carpet is Rs. 45 per sq m?
  • a)
    Rs. 4082.40
  • b)
    Rs. 3868.80
  • c)
    Rs. 4216.20
  • d)
    Rs. 3642.40
Correct answer is option 'A'. Can you explain this answer?

Aarav Sharma answered
Given:
- Breadth of the first carpet = 6 m
- Length of the first carpet = 1.44 times the breadth

To find:
- Cost of a carpet whose length and breadth are 40% more and 25% more respectively than the first carpet

Formula:
- Area of a rectangle = Length × Breadth

Calculation:
1. Length of the first carpet:
- Length = 1.44 × Breadth
- Length = 1.44 × 6
- Length = 8.64 m

2. Area of the first carpet:
- Area = Length × Breadth
- Area = 8.64 × 6
- Area = 51.84 sq m

3. Increased length and breadth of the second carpet:
- Length = 1.4 × Length of the first carpet
- Length = 1.4 × 8.64
- Length = 12.096 m
- Breadth = 1.25 × Breadth of the first carpet
- Breadth = 1.25 × 6
- Breadth = 7.5 m

4. Area of the second carpet:
- Area = Length × Breadth
- Area = 12.096 × 7.5
- Area = 90.72 sq m

5. Cost of the carpet:
- Cost per sq m = Rs. 45
- Cost of the first carpet = Area of the first carpet × Cost per sq m
- Cost of the first carpet = 51.84 × 45
- Cost of the first carpet = Rs. 2332.80
- Cost of the second carpet = Area of the second carpet × Cost per sq m
- Cost of the second carpet = 90.72 × 45
- Cost of the second carpet = Rs. 4082.40

Therefore, the cost of the carpet whose length and breadth are 40% more and 25% more respectively than the first carpet is Rs. 4082.40, which is option A.

The maximum distance between two points of the unit cube is
  • a)
    √2 + 1
  • b)
    √2
  • c)
    √3
  • d)
    √2 + √3
Correct answer is option 'C'. Can you explain this answer?

Ashwin Chawla answered
The distance from any vertex at the base of the cube to the vertex that is perpendicular along height to the diametrically opposite vertex is required.
We have to calculate DF.

Anil grows tomatoes in his backyard which is in the shape of a square. Each tomato takes 1 cm2 in his backyard. This year, he has been able to grow 131 more tomatoes than last year. The shape of the backyard remained a square. How many tomatoes did Anil produce this year?
  • a)
    4225
  • b)
    4096
  • c)
    4356
  • d)
    Insufficient Data
Correct answer is option 'C'. Can you explain this answer?

Naveen Jain answered
Let the area of backyard be x2 this year and y2 last year

∴ X2- Y2 = 131

=) (X+Y) (X-Y) = 131

Now, 131 is a prime number (a unique one too. Check out its properties on Google). Also, always identify the prime number given in a question. Might be helpful in cracking the solution.

=) (X+Y) (X-Y) = 131 x 1

=) X+Y = 131

X-Y = 1

=) 2X = 132 =) X = 66 

and Y = 65

∴ Number of tomatoes produced this year = 662 = 4356

Choice (C) is therefore, the correct answer.

Correct Answer: 4356

The area of the circle is 2464 cm2 and the ratio of the breadth of the rectangle to radius of the circle is 6:7. If the circumference of the circle is equal to the perimeter of the rectangle, then what is the area of the rectangle.
  • a)
    1456 cm2
  • b)
    1536 cm2
  • c)
    1254 cm2
  • d)
    5678 cm2
Correct answer is option 'B'. Can you explain this answer?

Area of the circle=πr2
2464 = 22/7 * r2
Radius of the circle=28 cm
Circumference of the circle=2 * π* r =2 * 22/7 * 28 
= 176 cm
Breadth of the rectangle=6/7 * 28=24 cm
Perimeter of the rectangle=2 * (l + b)
176 = 2 * (l + 24)
Length of the rectangle = 64 cm
Area of the rectangle = l * b = 24 * 64 = 1536 cm2 

If the parallel sides of a parallelogram are 2 cm apart and their sum is 10 cm then its area is:
  • a)
    20 cm2
  • b)
    5 cm2
  • c)
    10 cm2
  • d)
    none of these
Correct answer is option 'C'. Can you explain this answer?

Srestha Menon answered
Understanding the Parallelogram Area
To find the area of a parallelogram, we can use the formula:
Area = base × height
Where:
- The base is the length of one of the parallel sides.
- The height is the perpendicular distance between the parallel sides.
Given Information
- The distance between the parallel sides (height) = 2 cm
- The sum of the lengths of the parallel sides = 10 cm
Finding the Base
Since we have the sum of the two parallel sides, we can define their lengths as follows:
Let one side be "a" and the other side be "b". According to the problem:
a + b = 10 cm
To find the area, we need the length of one of the sides. For simplicity, let's assume both sides are equal. Thus:
a = b = 10 cm / 2 = 5 cm
Calculating the Area
Now, substituting the values into the area formula:
Area = base × height
Area = 5 cm × 2 cm
Area = 10 cm²
Conclusion
The area of the parallelogram is 10 cm². Hence, the correct answer is option 'C'. This demonstrates how understanding the properties of parallelograms can help solve geometry problems effectively.

Top surface of a raised platform is in the shape of regular octagon as shown in the figure. Find the area of the octagonal surface.
  • a)
    11.9 cm3
  • b)
    119 cm
  • c)
    119 m2
  • d)
    None of these
Correct answer is option 'C'. Can you explain this answer?

We will divide the octagon in 3 parts which are two trpeziums ABCH and DEFG and one rectangle CDGH and find the area for all of them separately and add them to get the area of octagon

Chapter doubts & questions for Mensuration: Volume, Surface Area & Solid Figures - Mathematics for RRB NTPC / ASM 2025 is part of RRB NTPC/ASM/CA/TA exam preparation. The chapters have been prepared according to the RRB NTPC/ASM/CA/TA exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for RRB NTPC/ASM/CA/TA 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Mensuration: Volume, Surface Area & Solid Figures - Mathematics for RRB NTPC / ASM in English & Hindi are available as part of RRB NTPC/ASM/CA/TA exam. Download more important topics, notes, lectures and mock test series for RRB NTPC/ASM/CA/TA Exam by signing up for free.

Signup to see your scores go up within 7 days!

Study with 1000+ FREE Docs, Videos & Tests
10M+ students study on EduRev