All Exams  >   JAMB  >   Mathematics for JAMB  >   All Questions

All questions of Differentiation & Its Applications for JAMB Exam

Using approximation find the value of 
  • a)
    2.025
  • b)
    2.001
  • c)
    2.01
  • d)
    2.0025
Correct answer is option 'D'. Can you explain this answer?

Gunjan Lakhani answered
Let x=4, Δx=0.01
y=x^½ = 2
y+Δy = (x+ Δx)^½ = (4.01)^½
Δy = (dy/dx) * Δx
Δy = (x^(-1/2))/2 * Δx
Δy = (½)*(½) * 0.01
Δy = 0.25 * 0.01
Δy = 0.0025
So, (4.01)^½ = 2 + 0.0025 = 2.0025

The maximum value of f (x) = sin x in the interval [π,2π] is​
a) 6
b) 0
c) -2
d) -4
Correct answer is option 'B'. Can you explain this answer?

Kiran Mehta answered
f(x) = sin x
f’(x) =cosx 
f”(x) = -sin x
f”(3pi/2) = -sin(3pi/2)
= -(-1)
=> 1 > 0 (local minima)
f(pi) = sin(pi) = 0
f(2pi) = sin(2pi) = 0 
Hence, 0 is the maxima.

  • a)
    1
  • b)
    1/3
  • c)
    1/2
  • d)
    0
Correct answer is option 'B'. Can you explain this answer?

Krishna Iyer answered
lim(x → 0) (tanx-x)/x2 tanx
As we know that tan x = sinx/cosx
lim(x → 0) (sinx/cosx - x)/x2(sinx/cosx)
lim(x → 0) (sinx - xcosx)/(x2 sinx)
lim(x → 0) cosx - (-xsinx + cosx)/(x2cosx + sinx (2x))
lim(x → 0) (cosx + xsinx - cosx)/x2cosx + 2xsinx)
lim(x → 0) sinx/(xcosx + 2sinx)
Hence it is 0/0 form, apply L hospital rule
lim(x → 0) cosx/(-xsinx + cosx + 2cosx)
⇒ 1/(0+1+2)
= 1/3

Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24 x – 18x2
  • a)
    56
  • b)
    49
  • c)
    23
  • d)
    89
Correct answer is option 'B'. Can you explain this answer?

Aryan Khanna answered
p’(x) = -24 - 36x
p”(x) = -36
Now, p’(x) = 0  ⇒ x = (-24)/36
x = -⅔
Also, p”(-⅔) = -36 < 0
By the second derivative test,  x = -⅔
Therefore, maximum profit = p(-⅔)
= 41 - 24(-⅔) - 18(-⅔)^2 
= 41 +16 - 8  
⇒ 49

Find the approximate value of f(10.01) where f(x) = 5x2 +6x + 3​
  • a)
    564.06
  • b)
    564.01
  • c)
    563.00
  • d)
    563.01
Correct answer is option 'A'. Can you explain this answer?

Naina Sharma answered
f(x) = 5x2 +6x + 3
f(10.01) = 5*(10.01)2 + 6*(10.01) + 3
To find (10.01)2
Let p=10, Δp=0.01
y=p2 = 100
y+Δy = (p+ Δp)2 = (10.01)2
Δy = (dy/dp) * Δp
Δy = 2*p* Δx
Δy = 2*10* 0.01
Δy = 20 * 0.01
Δy = 0.2
So, (10.01)2 = y + Δy
= 100.2
So,
f(10.01) = 5*(100.2) + 6*(10.01) + 3
= 501 + 60.06 + 3
= 564.06

The radius of air bubble is increasing at the rate of 0. 25 cm/s. At what rate the volume of the bubble is increasing when the radius is 1 cm.​
  • a)
    4π cm3/s
  • b)
    22π cm3/s
  • c)
    2π cm3/s
  • d)
    π cm3/s
Correct answer is option 'D'. Can you explain this answer?

Rohan Yadav answered
Given, the rate of increase of radius of the air bubble = 0.25 cm/s

We need to find the rate of increase of volume of the bubble when the radius is 1 cm.

Formula used:

Volume of a sphere = (4/3)πr^3

Differentiating both sides with respect to time t, we get:

dV/dt = 4πr^2(dr/dt)

where dV/dt is the rate of change of volume of the sphere with respect to time t and dr/dt is the rate of change of radius of the sphere with respect to time t.

Substituting the given values, we get:

dV/dt = 4π(1)^2(0.25) = π cm^3/s

Therefore, the rate of increase of volume of the bubble when the radius is 1 cm is π cm^3/s, which is the correct answer.

Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f ‘ (x) = 0 for every x, then
  • a)
    f is constant function if f  1/2 = f (3)
  • b)
    f is a constant function
  • c)
    f is a constant function if f  1/2 = 0
  • d)
    f is not a constant function
Correct answer is option 'A'. Can you explain this answer?

f ‘ (x) = 0 ⇒ f (x)is constant in (0 , 1)and also in (2, 4). But this does not mean that f (x) has the same value in both the intervals . However , if f (c) = f (d) , where c ∈ (0 , 1) and d ∈ (2, 4) then f (x) assumes the same value at all x ∈ (0 ,1) U (2, 4) and hence f is a constant function.

A real number x when added to its reciprocal give minimum value to the sum when x is
  • a)
    1/2
  • b)
    -1
  • c)
    1
  • d)
    2
Correct answer is option 'C'. Can you explain this answer?

Krish Das answered
Finding the Real Number that Gives Minimum Value to the Sum

Solution:

Let x be the real number. Then, its reciprocal is 1/x.

The sum of x and its reciprocal is x + 1/x.

To find the minimum value of this sum, we can use the concept of the arithmetic mean and geometric mean inequality.

We know that for any two positive numbers a and b, the arithmetic mean is (a+b)/2 and the geometric mean is √(ab).

The arithmetic mean is always greater than or equal to the geometric mean, i.e., (a+b)/2 ≥ √(ab).

Let's apply this inequality to x and 1/x.

The arithmetic mean of x and 1/x is (x + 1/x)/2.

The geometric mean of x and 1/x is √(x * 1/x) = √1 = 1.

By the arithmetic mean and geometric mean inequality, we have:

(x + 1/x)/2 ≥ √(x * 1/x) = 1

Multiplying both sides by 2 gives:

x + 1/x ≥ 2

Therefore, the minimum value of x + 1/x is 2, which is attained when x=1.

Hence, the real number x that gives minimum value to the sum x + 1/x is 1.

A point c in the domain of a function f is called a critical point of f if​
  • a)
    f’ (x) = 0 at x = c
  • b)
    f is not differentiable at x = c
  • c)
    Either f’ (c) = 0 or f is not differentiable
  • d)
    f” (x) = 0, at x = c
Correct answer is option 'B'. Can you explain this answer?

A point C in the domain of a function f at which either f(c) = 0 or f is not differentiable.  
The point f  is called the critical point.
c is called the point of local maxima
If f ′(x) changes sign from positive to negative as x increases through c, that is, if f ′(x) > 0 at every point sufficiently close to and to the left of c, and f ′(x) < 0 at every point sufficiently close to and to the right of c.
c is called the point of local minima
If f ′(x) changes sign from negative to positive as x increases through c, that is, if f ′(x) < 0 at every point sufficiently close to and to the left of c, and f ′(x) > 0 at every point sufficiently close to and to the right of c.
c is called the point of inflexion
If f ′(x) does not change sign as x increases through c, then c is neither a point of local maxima nor a point of local minima.

The maximum and minimum values of f(x) =  are
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Aryan Khanna answered
f(x) = sinx + 1/2cos2x  
⇒ f'(x) = cos x – sin2x 
Now, f'(x) = 0 gives cosx – sin2x = 0 
⇒ cos x (1 – 2 sinx) = 0 
⇒ cos x = 0, (1 – 2 sinx) = 0 
⇒ cos x = 0, sinx = 1/2 
⇒ x = π/6 , π/2 
Now, f(0) = 1/2, 
f(π/6) = 1/2 + 1/4 = 3/4, 
f(π/2) = 1 – 1/2 = 1/2 
Therefore, the absolute max value = 3/4 and absolute min = 1/2

is (where [*] denotes greatest integer function)
  • a)
    –1
  • b)
    0
  • c)
    –2
  • d)
    Does not exist
Correct answer is option 'C'. Can you explain this answer?

Geetika Shah answered
cosx=sin(x−π/2) 
limx→π/2 (x−π/2)/cosx
limx→π/2 (x−π/2)/[sin(x−π/2)]
= limθ→0 [θ/sinθ]= 1 
we let  θ=x−π/2  part way through
since  limt→0 sint/t=1  is a given after the first chapter in most calculus classes.
Using L’H: 
limx→π/2 (x−π/2)/cosx
= limx→π/2  (1/(−sinx)) = -1

The value of 
  • a)
    3/5
  • b)
    3/2
  • c)
    3/4
  • d)
    2/5
Correct answer is option 'B'. Can you explain this answer?

Neha Joshi answered
After applying L'Hôpital's Rule and taking the limit as �x approaches 0, the limit of the derivatives is 3223​, which confirms our initial computation of the limit

The n ∈ N is (where [*] denotes greatest integer function)
  • a)
    2n
  • b)
    2n+1
  • c)
    2n–1
  • d)
    Does not exist
Correct answer is option 'C'. Can you explain this answer?

Om Desai answered
lim θ→0[nsinθ/θ]=n−1.....[from graph maximum value of sinx/x=1]
lim θ→0[ntanθ/θ]=n.....[from graph minimum value of tanx/x=1]
Hence, lim x→θ([[nsinθ/θ]+[ntanθ/θ])
= n−1+n  =2n−1

Find two positive numbers x and y such that x + y = 60 and xy3 is maximum
  • a)
    x = 45, y = 15
  • b)
    x = 15, y = 45
  • c)
    x = 10, y = 50
  • d)
    x = 30, y = 30
Correct answer is option 'B'. Can you explain this answer?

Gaurav Kumar answered
two positive numbers x and y are such that x + y = 60.
 x + y = 60
⇒ x = 60 – y  ...(1)
Let P = xy3
∴ P =(60 – y)y3 = 60y3 – y4
Differentiating both sides with respect to y, we get

For maximum or minimum dP/dy = 0
⇒ 180y2 - 4y3 = 0
⇒ 4y2 (45 - y) = 0
⇒ y = 0 or 45 - y = 0
⇒ y = 0 or y = 45
⇒ y = 45 (∵ y = 0 is not possible)


Thus, the two positive numbers are 15 and 45.

 is equal to 
  • a)
    1/6
  • b)
  • c)
  • d)
    0
Correct answer is option 'C'. Can you explain this answer?

Stan answered
Sinx -x/x^3 it is in 0/0 form 
so use L hospital rule,
using it we get :  cosX-1/3x^2
again using : -sinX/3*2X=-1/6 lim sinx/x=-1/6

If f(x) = 2, then 
  • a)
    2
  • b)
    1
  • c)
    4
  • d)
    0
Correct answer is option 'A'. Can you explain this answer?

Pooja Shah answered
f(x) = 2
Hence it doesnt contain any variable
so, lim(x → 2) f(x) = 2

If the right and left hand limits coincide, we call that common value as the limit of f(x) at x = a and denote it by
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Gaurav Kumar answered
If the right-hand and left-hand limits coincide, we say the common value as the limit of f(x) at x = a and denote it by limx→a f(x) = l
  • If limx→a- f(x) is the expected value of f at x = a given the values of ‘f’ near x to the left of a. This value is known as the left-hand limit of ‘f’ at a.
  • If limx→a+ f(x) is the expected value of f at x = a given the values of ‘f’ near x to the right of a. This value is known as the right-hand limit of f(x) at a.

The maximum value of  is​
  • a)
    (1/e)1/e
  • b)
    (e)2/e
  • c)
    (e)-1/e
  • d)
    (e)1/e
Correct answer is option 'D'. Can you explain this answer?

For every real number (or) valued function f(x), the values of x which satisfies the equation f1(x)=0 are the point of it's local and global maxima or minima.
This occurs due to the fact that, at the point of maxima or minima, the curve of the function has a zero slope.
We have function f(x) = (1/x)x
We will be using the equation, y = (1/x)x 
Taking in both sides we get
ln y = −xlnx
Differentiating both sides with respect to x.y. 
dy/dx = −lnx−1
dy/dx =−y(lnx+1)
Equating  dy/dx to 0, we get
−y(lnx+1)=0
Since y is an exponential function it can never be equal to zero, hence
lnx +1 = 0
lnx = −1
x = e(−1)
So, for the maximum value we put x = e^(−1)in f(x) to get the value of f(x) at the point.
f(e^−1) = e(1/e).
Hence the maximum value of the function is (e)1/e

The derivate of the function 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Gaurav Kumar answered
Given, y = (sinx+cosx)/(sinx−cosx)
∴ dydx = [(sinx−cosx)(cosx−sinx)−(sinx+cosx)(cosx+sinx)]/(sinx−cosx)2 
[by quotient rule]
= [(−sinx−cosx)2 − (sinx+cosx)2]/(sinx−cosx)2
− [(sinx−cosx)2 − (sinx+cosx)2]/(sinx−cosx)2
= − [(sin2x + cos2x − 2sinxcosx + sin2x + cos2x + 2sinxcosx)]/(sinx−cosx)2
= −2/(sinx−cosx)2
= -2/(sin2x + cos2x - 2sinxcosx)
= - 2/(1 - sin2x)

f(x) = x5 – 5x4 + 5x3 – 1. The local maxima of the function f(x) is at x =
  • a)
    1
  • b)
    5
  • c)
    0
  • d)
    3
Correct answer is option 'A'. Can you explain this answer?

Rajat Patel answered
f′(x)=5x4−20x3+15x2 
f′(x)=5x2(x2−4x+3)
when f′(x)=0
⇒5x2(x2−4x+3)=0
⇒5x2(x−3)(x−1)=0
⇒x=0,x=3,x=1

In case of strict decreasing functions, slope of tangent and hence derivative is
  • a)
    Negative
  • b)
    either negative or zero.
  • c)
    Zero
  • d)
    Positive
Correct answer is option 'A'. Can you explain this answer?

Avantika Joshi answered
In the case of strictly decreasing functions, the slope of the tangent line is always negative. This implies that the derivative of a strictly decreasing function is always negative. The derivative represents the rate of change of the function, and if the function is strictly decreasing, the rate of change is negative.

  • a)
    sin2x
  • b)
    tan2x
  • c)
    2sinx
  • d)
    cos2x
Correct answer is option 'D'. Can you explain this answer?

Use, the law of multiplication for derivation

solution:- d/dx ((sinx)(cosx))
= sinx d/dx( cosx) + cosx d/dx (sinx)
= - sinx^2 + cosx^2
= cosx^2 - sinx^2
= cos2x

Let f (x) be differentiable in (0, 4) and f (2) = f (3) and S = {c : 2 < c < 3, f’ (c) = 0} then
  • a)
    S has exactly one point
  • b)
    S = { }
  • c)
    S has atleast one point
  • d)
    none of these
Correct answer is option 'C'. Can you explain this answer?

Conditions of Rolle’s Theorem are satisfied by f(x) in [2,3].Hence there exist atleast one real c in (2, 3) s.t. f ‘(c) = 0 . Therefore , the set S contains atleast one element

If the line y=x is a tangent to the parabola y=ax2+bx+c at the point (1,1) and the curve passes through (−1,0), then
  • a)
     
    a=b=−1, c=3
  • b)
     
    a=b=1/2, c=0
  • c)
     
    a=c=1/4, b=1/2
  • d)
     
    a=0, b=c=1/2
Correct answer is option 'C'. Can you explain this answer?

Rajesh Gupta answered
The correct option is C 
a=c=1/4, b=1/2
y=x is a tangent
∴ slopes are equal.
dy/dx=2ax+b
⇒1=2a+b at (1,1)⋯(1)
Also, the parabola passes through (1,1)
⇒a+b+c=1⋯(2)
The parabola passes through (−1,0)
⇒0=a−b+c⋯(3)
Solving (1),(2),(3), we get -
∴a=c=1/4
and b=1/2

Chapter doubts & questions for Differentiation & Its Applications - Mathematics for JAMB 2025 is part of JAMB exam preparation. The chapters have been prepared according to the JAMB exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for JAMB 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Differentiation & Its Applications - Mathematics for JAMB in English & Hindi are available as part of JAMB exam. Download more important topics, notes, lectures and mock test series for JAMB Exam by signing up for free.

Mathematics for JAMB

134 videos|94 docs|102 tests

Top Courses JAMB