All Exams  >   EmSAT Achieve  >   Mathematics for EmSAT Achieve  >   All Questions

All questions of Differentiation for EmSAT Achieve Exam

The function f(x) = ax, 0 < a < 1 is​
  • a)
    increasing
  • b)
    strictly decreasing on R
  • c)
    neither increasing or decreasing
  • d)
    decreasing
Correct answer is option 'D'. Can you explain this answer?

Krishna Iyer answered
 f(x) = ax
Taking log bth the sides, log f(x) = xloga
f’(x)/ax = loga
f’(x) = ax loga   {ax > 0 for all x implies R, 
for loga e<a<1 that implies loga < 0}
Therefore, f’(x) < 0, for all x implies R
f(x) is a decreasing function.

Using approximation find the value of 
  • a)
    2.025
  • b)
    2.001
  • c)
    2.01
  • d)
    2.0025
Correct answer is option 'D'. Can you explain this answer?

Gunjan Lakhani answered
Let x=4, Δx=0.01
y=x^½ = 2
y+Δy = (x+ Δx)^½ = (4.01)^½
Δy = (dy/dx) * Δx
Δy = (x^(-1/2))/2 * Δx
Δy = (½)*(½) * 0.01
Δy = 0.25 * 0.01
Δy = 0.0025
So, (4.01)^½ = 2 + 0.0025 = 2.0025

If the function f (x) = x2– 8x + 12 satisfies the condition of Rolle’s Theorem on (2, 6), find the value of c such that f ‘(c) = 0​
  • a)
    6
  • b)
    4
  • c)
    8
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Dr Manju Sen answered
f (x) = x2 - 8x + 12
Function satisfies the condition of Rolle's theorem for (2,6).
We need to find c for which f’(c) = 0
f’(x) = 2x – 8
f’(c) = 2c – 8 = 0
c = 4

When Rolle’s Theorem is verified for f(x) on [a, b] then there exists c such that​
  • a)
    c ε [a, b] such that f'(c) = 0
  • b)
    c ε (a, b) such that f'(c) = 0
  • c)
    c ε (a, b] such that f'(c) = 0
  • d)
    c ε [a, b) such that f'(c) = 0
Correct answer is option 'B'. Can you explain this answer?

Answer is
B) c ∈ (a, b) such that f'(c) = 0.
Statement for Rolle’s Theorem :
Suppose that a function f(x) is continuous on the closed interval [a,b] and differentiable on the open interval (a,b). Then if f(a)=f(b), then there exists at least one point c in the open interval (a,b) for which f′(c)=0.
 

Whta is the derivatve of y = log5 (x)
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'C'. Can you explain this answer?

Tanuja Kapoor answered
y = log5 x = ln x/ln 5 → change of base 
= ln x/ln 5
dy/dx = 1/ln5⋅1/x → 1/ln5 is a constant, so we don't change it
= 1/(x ln 5)

  • a)
    – 1
  • b)
    0
  • c)
    1
  • d)
    1/2
Correct answer is option 'D'. Can you explain this answer?

Angad Gupta answered
We have to use L'Hopital Rule It is in the form 0/0 So first we have to differentiate it After differentiating we get sinx/2x Then again differentiate it We get cosx/2 and now we get the answer as 1/2

The maximum value of f (x) = sin x in the interval [π,2π] is​
a) 6
b) 0
c) -2
d) -4
Correct answer is option 'B'. Can you explain this answer?

Kiran Mehta answered
f(x) = sin x
f’(x) =cosx 
f”(x) = -sin x
f”(3pi/2) = -sin(3pi/2)
= -(-1)
=> 1 > 0 (local minima)
f(pi) = sin(pi) = 0
f(2pi) = sin(2pi) = 0 
Hence, 0 is the maxima.

Differentiate sin22 + 1) with respect to θ2
  • a)
    sin(2θ2 + 1)
  • b)
    cos(2θ2 + 2)
  • c)
    sin(2θ2 + 2)
  • d)
    cos(2θ2 + 1)
Correct answer is option 'C'. Can you explain this answer?

Gunjan Lakhani answered
y = sin22+1)
v = θ2
dy/d(v) = dydθ/dvdθ
dy/dthη = sin2(V+1)
= 2sin(V+1)⋅cos(V+1)dv/dθ
= 2sin(θ2+1)cos(θ2+1)
= sin2(θ2+1).

A real function f is said to be continuous if it is continuous at every point in …… .​
  • a)
    [-∞,∞]
  • b)
    The range of f
  • c)
    The domain of f
  • d)
    Any interval of real numbers
Correct answer is option 'A'. Can you explain this answer?

Its domain. This means that for any point x in the domain of f, as x approaches a certain value a, the value of f(x) approaches f(a). In other words, there are no sudden jumps or gaps in the graph of f.

More formally, a function f is continuous at a point a if:

1. f(a) is defined (i.e. a is in the domain of f).
2. The limit of f(x) as x approaches a exists (i.e. the left and right-hand limits are equal).
3. The limit of f(x) as x approaches a is equal to f(a).

If a function is continuous at every point in its domain, it is called a continuous function. Continuous functions have many useful properties and are often used in mathematical models and real-world applications.

If 3 sin(xy) + 4 cos (xy) = 5, then   = .....
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Dr Manju Sen answered
3sinxy + 4cosxy = 5
⇒ 5(3/5 sinxy + 4/5 cosxy) = 5 
⇒ (3/5 sinxy + 4/5 cosxy) = 1
now (3/5)²+(4/5)² = 1
    so let, 3/5 =   cosA
             ⇒ 4/5 = sinA
So , (3/5 sinxy + 4/5 cosxy) = 1
     ⇒ (cosAsinxy + sinAcosxy) = 1
     ⇒ sin(A+xy) = 1
     ⇒ A + xy = 2πk + π/2 (k is any integer)
     ⇒ sin⁻¹(4/5) + xy = 2πk + π/2
     differenciating both sides with respect to x
   0 + xdy/dx + y = 0
      dy/dx = -y/x

Can you explain the answer of this question below:

The derivatve of f(x) = 

  • A:

  • B:

  • C:

  • D:

    3x2

The answer is b.

.mie. answered
Here in this function ....firstly... exponential and logarithmic fn are anti to each other... and therefore cncl out ech other.... here.. in this e and log cncl out ech other... and we are left with .... log x^3..... acc to formula.. log m^n = n log m therefore... 3 log x so we reduced our eq to this then taking derivative.... its 3/x

y = log(sec + tan x)
  • a)
    sec x tan x – 1
  • b)
    sec x
  • c)
    sec x tan x + 1
  • d)
    tan x
Correct answer is option 'B'. Can you explain this answer?

Lavanya Menon answered
y = log(secx + tanx)
dy/dx = 1/(secx + tanx){(secxtanx) + sec2x}
= secx(secx + tanx)/(secx + tanx)
= secx

Derivatve of f(x)   is given by
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?

Neha Sharma answered
 y
The derivative of y = ef(x)is dy/dx = f'(x)ef(x)
In this case, f(x) = x2 , and the derivative of x2 = 2x
Therefore, f'(x)= 2x,
 dy/dx = 2x

 For what values of a and b, f is a continuous function.
  • a)
    a=2,b=0
  • b)
    a=1,b=0
  • c)
    a=0,b=2
  • d)
    a=0,b=0
Correct answer is 'A'. Can you explain this answer?

Tejas Verma answered
For continuity: LHL=RHL
at x=2,
LHL: x < 2 ⇒ f(x) = 2*a
RHL: x ≥ 2 ⇒ f(x) = 4
For continuity: LHL = RHL
⇒ 2a = 4 ⇒ a = 2
at x = 0,
LHL: x < 0 ⇒ f(x) = b
RHL: x ≥ 0 ⇒ f(x) = 0 * a
For continuity: LHL = RHL
⇒ b = 0

Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24 x – 18x2
  • a)
    56
  • b)
    49
  • c)
    23
  • d)
    89
Correct answer is option 'B'. Can you explain this answer?

Aryan Khanna answered
p’(x) = -24 - 36x
p”(x) = -36
Now, p’(x) = 0  ⇒ x = (-24)/36
x = -⅔
Also, p”(-⅔) = -36 < 0
By the second derivative test,  x = -⅔
Therefore, maximum profit = p(-⅔)
= 41 - 24(-⅔) - 18(-⅔)^2 
= 41 +16 - 8  
⇒ 49

​Find the derivate of y = sin4x + cos4x
  • a)
    – sin 2x
  • b)
    4 sin3 x + 4 cos3 x
  • c)
    – sin 4x
  • d)
    4 sin x cos x cos 2x
Correct answer is option 'C'. Can you explain this answer?

Mohit Rajpoot answered
y=sin4x,  and z=cos4x
So by using chain rule
df(x)/dx = dsin4x/dx + dcos4x/dx
=dy4/dy * dy/dx + dz4/dz * dzdx
=dy4/dy * dsinxdx + dz4/dz * dcosx/dx
=4y(4−1)⋅cosx+4z(4−1)⋅(−sinx)
=4sin3xcosx − 4cos3xsinx
=4sinxcosx(sin2x − cos2x)
=2sin2x(−cos2x)
=−2sin2xcos2x
=−sin4x

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?

Sushil Kumar answered

now differentiate y with respect to x,
dy/dx = -{[x d/dx(1+x) - (1+x)dx/dx]}/(1+x2)
= -1/(1+x)2


Correct answer is option 'A'. Can you explain this answer?

Aryan Khanna answered
y = tan-1(1-cosx)/sinx
y = tan-1{2sin2(x/2)/(2sin(x/2)cos(x/2)}
y = tan-1{tan x/2}
y = x/2  => dy/dx = 1/2

Function f(x) = log x +  is continuous at​
  • a)
    (0,1)
  • b)
    [-1,1]
  • c)
    (0,∞)
  • d)
    (0,1]
Correct answer is option 'D'. Can you explain this answer?

Om Desai answered
  • [-1,1] cannot be continuous interval because log is not defined at 0.
  • The value of x cannot be greater than 1 because then the function will become complex.
  • (0,1) will not be considered because its continuous at 1 as well. Hence D is the correct option.

Find slope of normal to the curve y=5x2-10x + 7 at x=1​
  • a)
    not defined
  • b)
    -1
  • c)
    1
  • d)
    zero
Correct answer is option 'A'. Can you explain this answer?

Neha Sharma answered
y = 5x2 - 10x + 7
dy/dx = 10x - 10
(At x = 1) 10(1) - 10 
m1 = 0
As we know that slope, m1m2 = -1 
=> 0(m2) = -1
m2 = -1/0 (which is not defined)

Find the approximate value of f(10.01) where f(x) = 5x2 +6x + 3​
  • a)
    564.06
  • b)
    564.01
  • c)
    563.00
  • d)
    563.01
Correct answer is option 'A'. Can you explain this answer?

Naina Sharma answered
f(x) = 5x2 +6x + 3
f(10.01) = 5*(10.01)2 + 6*(10.01) + 3
To find (10.01)2
Let p=10, Δp=0.01
y=p2 = 100
y+Δy = (p+ Δp)2 = (10.01)2
Δy = (dy/dp) * Δp
Δy = 2*p* Δx
Δy = 2*10* 0.01
Δy = 20 * 0.01
Δy = 0.2
So, (10.01)2 = y + Δy
= 100.2
So,
f(10.01) = 5*(100.2) + 6*(10.01) + 3
= 501 + 60.06 + 3
= 564.06

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'C'. Can you explain this answer?

Poonam Reddy answered
y + sin y = 5x
dy/dx + cos ydy/dx = 5
dy/dx = 5/(1+cos y)

The equation of the normal to the curve x2 = 4y which passes through the point (1, 2) is.​
  • a)
    x + y – 3 = 0
  • b)
    4x – y = 2
  • c)
    4x – 2y = 0
  • d)
    4x – 3y + 2= 0
Correct answer is option 'B'. Can you explain this answer?

Sushil Kumar answered
h= 4k 
slope of normal=−1/(dy/dx) = −2h
equation of normal(y − k)= −2h(x−h)
k = 2 + 2/h(1 − h)
(h2) / 4 = 2 + 2/h (1 − h)
h = 2, k = 1
equation of line (y - 1)= -1(x - 2)
x + y = 3

The radius of air bubble is increasing at the rate of 0. 25 cm/s. At what rate the volume of the bubble is increasing when the radius is 1 cm.​
  • a)
    4π cm3/s
  • b)
    22π cm3/s
  • c)
    2π cm3/s
  • d)
    π cm3/s
Correct answer is option 'D'. Can you explain this answer?

Rohan Yadav answered
Given, the rate of increase of radius of the air bubble = 0.25 cm/s

We need to find the rate of increase of volume of the bubble when the radius is 1 cm.

Formula used:

Volume of a sphere = (4/3)πr^3

Differentiating both sides with respect to time t, we get:

dV/dt = 4πr^2(dr/dt)

where dV/dt is the rate of change of volume of the sphere with respect to time t and dr/dt is the rate of change of radius of the sphere with respect to time t.

Substituting the given values, we get:

dV/dt = 4π(1)^2(0.25) = π cm^3/s

Therefore, the rate of increase of volume of the bubble when the radius is 1 cm is π cm^3/s, which is the correct answer.

If f(x) = | x | ∀ x ∈ R, then
  • a)
    f is discontinuous at x = 0
  • b)
    f is derivable at x = 0 and f ‘ (0) = 1
  • c)
    f is derivable at x = 0 but f’ (0) ≠
  • d)
    none of these
Correct answer is option 'D'. Can you explain this answer?

Sakshi Jain answered
|X| is a continuous function ,which is clear from its graph but at x=0,|X| is not differentiable since it has a sharp edge at x=0 . hence 'd' is correct option.

The value of c for which Lagrange’s theorem f(x) = |x| in the interval [-1, 1] is​
  • a)
    1/2
  • b)
    1
  • c)
    -1/2
  • d)
    non-existent in the interval
Correct answer is option 'D'. Can you explain this answer?

Rakhi Kumari answered
Since Fx =|x| therefore it's graph will be considerd only in the x axis but not in y axis and also its been in the closed interval [-1, 1] so other options will be neglected

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Suhani Dangarh answered
Put x=tan thita. then you will get. 2 tan inverse x then differentiate

Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f ‘ (x) = 0 for every x, then
  • a)
    f is constant function if f  1/2 = f (3)
  • b)
    f is a constant function
  • c)
    f is a constant function if f  1/2 = 0
  • d)
    f is not a constant function
Correct answer is option 'A'. Can you explain this answer?

f ‘ (x) = 0 ⇒ f (x)is constant in (0 , 1)and also in (2, 4). But this does not mean that f (x) has the same value in both the intervals . However , if f (c) = f (d) , where c ∈ (0 , 1) and d ∈ (2, 4) then f (x) assumes the same value at all x ∈ (0 ,1) U (2, 4) and hence f is a constant function.

Chapter doubts & questions for Differentiation - Mathematics for EmSAT Achieve 2025 is part of EmSAT Achieve exam preparation. The chapters have been prepared according to the EmSAT Achieve exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for EmSAT Achieve 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Differentiation - Mathematics for EmSAT Achieve in English & Hindi are available as part of EmSAT Achieve exam. Download more important topics, notes, lectures and mock test series for EmSAT Achieve Exam by signing up for free.

Mathematics for EmSAT Achieve

146 videos|222 docs|220 tests

Top Courses EmSAT Achieve