SSC CGL Exam  >  SSC CGL Tests  >  SSC CGL Tier 2 - Study Material, Online Tests, Previous Year  >  Test: Simplification- 2 - SSC CGL MCQ

Test: Simplification- 2 - SSC CGL MCQ


Test Description

21 Questions MCQ Test SSC CGL Tier 2 - Study Material, Online Tests, Previous Year - Test: Simplification- 2

Test: Simplification- 2 for SSC CGL 2024 is part of SSC CGL Tier 2 - Study Material, Online Tests, Previous Year preparation. The Test: Simplification- 2 questions and answers have been prepared according to the SSC CGL exam syllabus.The Test: Simplification- 2 MCQs are made for SSC CGL 2024 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests for Test: Simplification- 2 below.
Solutions of Test: Simplification- 2 questions in English are available as part of our SSC CGL Tier 2 - Study Material, Online Tests, Previous Year for SSC CGL & Test: Simplification- 2 solutions in Hindi for SSC CGL Tier 2 - Study Material, Online Tests, Previous Year course. Download more important topics, notes, lectures and mock test series for SSC CGL Exam by signing up for free. Attempt Test: Simplification- 2 | 21 questions in 30 minutes | Mock test for SSC CGL preparation | Free important questions MCQ to study SSC CGL Tier 2 - Study Material, Online Tests, Previous Year for SSC CGL Exam | Download free PDF with solutions
Test: Simplification- 2 - Question 1

47.932 + 56 + 97.168 – 67 – 78.3 – 22.7

Detailed Solution for Test: Simplification- 2 - Question 1

Expression:

( 47.932 + 56 + 97.168 - 67 - 78.3 - 22.7 )

Step 1: Add the positive terms:

( 47.932 + 56 + 97.168 = 201.1 )

Step 2: Add the negative terms:

( 67 + 78.3 + 22.7 = 168 )

Step 3: Subtract the sum of negative terms from the sum of positive terms:

( 201.1 - 168 = 33.1 )

Final Answer: The result of the expression is 33.1.

Test: Simplification- 2 - Question 2

4789300 x 11

Detailed Solution for Test: Simplification- 2 - Question 2
  • To solve 4789300 x 11, we can break it down.
  • First, multiply 4789300 by 10, which gives 47893000.
  • Next, add 4789300 to that result (because 11 is 10 + 1).
  • So, 47893000 + 4789300 = 52682300.
  • The correct answer is 52682300, which is option 1.
1 Crore+ students have signed up on EduRev. Have you? Download the App
Test: Simplification- 2 - Question 3

6 1/4 + 0.25 + 0.75 - 0.3125 = ?

Detailed Solution for Test: Simplification- 2 - Question 3

To solve the expression:

6 1/4 + 0.25 + 0.75 - 0.3125 = ?

Step 1: Convert the mixed fraction to a decimal.

14   = 6.25)

Now, substitute (6.25) into the expression:

Expression: (6.25 + 0.25 + 0.75 - 0.3125)

Step 2: Calculate each operation:

  • (6.25 + 0.25 = 6.5)
  • (6.5 + 0.75 = 7.25)
  • (7.25 - 0.3125 = 6.9375)

Answer: a) 6.9375

Test: Simplification- 2 - Question 4

√(2197)2/3 - (1728)2/3 = ?

Detailed Solution for Test: Simplification- 2 - Question 4

∛(-1728 × -2197)

1728 can be written as 12 × 12 × 12
2197 can be written as 13 × 13 × 13

So,

∛(-1728 × -2197)
= ∛(-12 × 12 × 12) × ∛(-13 × 13 × 13)
= ∛((-12)³) × ∛((-13)³)
= (-12³)1/3 × (-13³)1/3

= -12 x - 13

= 156

∴ ∛(-1728 × -2197) = 156

Test: Simplification- 2 - Question 5

4 1/2 - 3 1/7 + 13 2/7 - 8 1/4 = ?

Detailed Solution for Test: Simplification- 2 - Question 5

= we know,
(4-3+13-8)+(1/2 - 1/7 + 2/7 -1/4)
= 6 + 11/28
6 11/28
= option C 

Test: Simplification- 2 - Question 6

√169 × 256 = (?)² × 13

Detailed Solution for Test: Simplification- 2 - Question 6

Given equation:
√169 × 256 = (?)² × 13
Step 1: Calculate the square root of 169
√169 = 13
Substitute this value back into the equation:
13 × 256 = (?)² × 13

Step 2: Divide both sides by 13
256 = (?)²

Step 3: Solve for ( ? )
Taking the square root of both sides:
? = √256 = 16

The answer is: d) 16

Test: Simplification- 2 - Question 7

What should come in the place of question mark (?) in the following equation? 
((7 × ?)² / 49) - √81

Detailed Solution for Test: Simplification- 2 - Question 7

The correct option is C.
(7*x)2/49 = _/81
⇒ 49*x2/49 = _/81
⇒ x2 = _/81
⇒ x2 = 9
⇒ x = 3

Test: Simplification- 2 - Question 8

Simplify: 10 1/2 - [8 1/2 + {6 - (7 - 6 - 4)}]

Detailed Solution for Test: Simplification- 2 - Question 8

Given expression = 10 1/2 - [8 1/2 + {6 - (7 - 6 - 4)}]

= 10 1/2 -[8 1/2+{6–5}]

= 10 1/2 -[8 1/2+1]

= 10 1/2 -9 1/2

= 1

Test: Simplification- 2 - Question 9

What approximate value should come in place of the question mark (?) in the given questions?

14.998% of 619.999 =?

Detailed Solution for Test: Simplification- 2 - Question 9

Given,

14.998% of 619.999 =?

It can also be approximated as

15% of 600=?

= ×600

= 90 ≈ 95

Test: Simplification- 2 - Question 10

Find the value of x:
2³ × 3⁴ × 1080 ÷ 15 = 6ˣ

Detailed Solution for Test: Simplification- 2 - Question 10

Given,

23 × 34 × 1080 ÷ 15 = 6x

⇒ 23 × 34 × 72 = 6x

⇒ 23 × 34 × (2 × 62) = 6x

⇒ 24 × 34 × 62 = 6x

⇒ (2 × 3)4 × 62 = 6x           [∵ xm × ym = (xy)m]

⇒ 64 × 62 = 6x

⇒ 6(4 + 2) = 6x

⇒ x = 6

Test: Simplification- 2 - Question 11

111 - [111 ÷ {111 × (111 ÷ 111 × 111)}] = ?

Detailed Solution for Test: Simplification- 2 - Question 11
  1. Start with the innermost part: 111 + 111 × 111

    111×111=12321
    111+12321=12432
  2. Next, calculate 111÷12432, which is approximately 0 since 12432 is much larger than 111.

  3. Substitute back into the expression:

    111−[111+{111×0}] = 111−[111+0] = 111−111 = 0

Answer: 0 (Option a)

Test: Simplification- 2 - Question 12

Find the value of √(380 + √(380 + √(380 + √(380 + ... ∞))))

Detailed Solution for Test: Simplification- 2 - Question 12

x = √(380 + √(380 + √(380 + √(380 + ... ∞))))
x= 380 + x
x-x - 380 = 0
(x - 20)(x + 19)

Test: Simplification- 2 - Question 13

Which one of the following fractions is the greatest?

Detailed Solution for Test: Simplification- 2 - Question 13

1/7 = 0.1429
2/9 = 0.2222
4/11 = 0.3636
3/10 = 0.3
So, the greatest fraction is 4/11

Test: Simplification- 2 - Question 14

The sum of the digits of a two-digit number is 9. If the digits are reversed, the number is decreased by 45. Find the number.

Detailed Solution for Test: Simplification- 2 - Question 14

Let the two-digit number be 10x + y, where x is the tens digit and y is the units digit.

  1. The sum of the digits is 9:
    x + y = 9

  2. When the digits are reversed, the new number is 10y + x. The number decreases by 45 when reversed:
    10x + y - (10y + x) = 45
    Simplify:
    9x - 9y = 45
    x - y = 5

  3. Solve the two equations:
    x + y = 9
    x - y = 5

    Add the two equations:
    2x = 14
    x = 7

    Substitute x = 7 into x + y = 9:
    7 + y = 9
    y = 2

  4. The number is:
    10x + y = 10(7) + 2 = 72

Answer: D: 72

Test: Simplification- 2 - Question 15

The sum of the digits of a two-digit number is 8. If the digits are reversed, the number is decreased by 54. Find the number.

Detailed Solution for Test: Simplification- 2 - Question 15

Let the two-digit number be represented as 10a + b, where:

  • a is the tens digit.
  • b is the one digit.

According to the problem:

  1. The sum of the digits is 8:

    a+b=8
  2. When the digits are reversed, the number is decreased by 54. The number with reversed digits is 10b + a. So:

    10a+b−(10b+a)=54

    Simplifying this equation:

    10a+b−10b−a=54
    9a−9b=54
    a−b=6

Now, we have two equations:

  1. a+b=8
  2. a−b=6

Add these two equations:

(a+b)+(a−b)=8+6
2a = 14
a=7

Substitute a=7 into a+b=8:

7+b=8 , b = 1

So, the number is 10a+b=10×7+1=71

Answer: The number is 71.

Test: Simplification- 2 - Question 16

If the sum of a number and its square is 156, what is the number?

Detailed Solution for Test: Simplification- 2 - Question 16

Let the number be x.
x + x2 = 156
x+ x − 156 = 0
(x − 12)(x + 13) = 0

x + 13 = 0
x = −13 (Since x is a natural number)
x − 12 = 0
x = 12

Test: Simplification- 2 - Question 17

What is the number in the unit place in (5427)641?

Detailed Solution for Test: Simplification- 2 - Question 17

The correct answer is B as the unit place will be 7 only .

Test: Simplification- 2 - Question 18

A number when divided by 1092 gives a remainder 60. What remainder would be obtained by dividing the same number by 28?

Detailed Solution for Test: Simplification- 2 - Question 18

In these type of of questions we apply a trick by just dividing the given remainder by given no.
60 ÷ 28
remainder will come( 4)

Test: Simplification- 2 - Question 19

The sum of squares of two numbers is 85 and the square of first number is 77 more than by the square of second number. The product of the two numbers is

Detailed Solution for Test: Simplification- 2 - Question 19

Let the two numbers be x and y.

  1. Given x² + y² = 85 and x² = y² + 77.

  2. Substituting x² = y² + 77 into x² + y² = 85:
    (y² + 77) + y² = 85
    2y² = 8
    y² = 4, so y = ±2.

  3. Substituting y² = 4 into x² = y² + 77:
    x² = 4 + 77 = 81, so x = ±9.

  4. The product is x × y = 9 × 2 = 18.

Answer: A: 18

Test: Simplification- 2 - Question 20

Find the number in the unit place in (321)321 x (325)326.

Detailed Solution for Test: Simplification- 2 - Question 20

321 raised to 321=1 in unit digit and any number ending in 5 raised to any number has always 5 as unit digit, so 1×5=5

Test: Simplification- 2 - Question 21

The approximate value of (4.669 × 4.669 - 2.331 × 2.331) / ((4.669)² + (2.331)² - 4.669 × 4.662) is

Detailed Solution for Test: Simplification- 2 - Question 21

The given expression is:
(4.669 × 4.669 - 2.331 × 2.331) / ((4.669)² + (2.331)² - 4.669 × 4.662)

  1. Numerator:
    4.669 × 4.669 = 21.794
    2.331 × 2.331 = 5.433
    21.794 - 5.433 = 16.361

  2. Denominator:
    (4.669)² = 21.794
    (2.331)² = 5.433
    4.669 × 4.662 = 21.748
    21.794 + 5.433 - 21.748 = 5.479

  3. Final Calculation:
    16.361 / 5.479 ≈ 2.99

Answer: B: 2.99

1365 videos|1312 docs|1010 tests
Information about Test: Simplification- 2 Page
In this test you can find the Exam questions for Test: Simplification- 2 solved & explained in the simplest way possible. Besides giving Questions and answers for Test: Simplification- 2, EduRev gives you an ample number of Online tests for practice

Top Courses for SSC CGL

Download as PDF

Top Courses for SSC CGL