Page 2
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( t it ) dt
? ( t
i t
i t
t
) dt
i ? t
dt
i 4
t
5
i
i
3
Ex.1\Pg.46 Evaluate , where f (z) =x
2
+iy
2
and C is given by
z ( t) t i t t
Sol
n
:- z ( t) t it z ( t ) i
But z = x+iy
x =t , y=t
? f ( z ) ( x(t ) )
2
+i (y(t))
2
=t
2
+ i t
2
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( i ) dt
i ? t
dt
i 4
t
3
5
3
i
NOTE: Curve in Que 2 & 3 both are smoothly equivalent by thm 4.5
Qu e 3 ? f
w her e f ( z ) z
C is g iven by z ( t ) sin t i cos t , t
S oltio n f ( z ) z
x iy x i y
x
y
x
x
y
y
x
y
z(t) = sin t + i cost z ( t) cos t – i sin t
but z = x +i y
? x sin t , y = cos t
? x
2
+ y
2
=1
f(z(t)) = sin t –i cos t
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( sin t i cost ) ( cost i sin t ) dt
? ( sin t cost i ) dt
Ex pg E v aluate ? f
w her e f ( z ) z
C is g iven by z ( t ) R cos t i R sin t , t , R
S olu ti on f ( z ) z
x i y
x i y x
y
z ( t ) R cos t i R sin t z
( t ) R sin t i R cos t
But, z =x+iy
? ( ( ) ) R cos R
R sin R
cos R
sin R
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
?
cos i sin R
( R sin t i R cos t ) dt
? ( C ost iS in t ) ( S in t iCost ) dt
? ( sin t cos t i sin
t i cos
t cos t sin t ) dt
? ( sin
t cos
t ) dt
i ? . dt
i ( t )
i
T he cu r v e i s sai d to b e smooth iff z ( t) , excep t a t a f in it e n o. of p oi nt s.
Page 3
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( t it ) dt
? ( t
i t
i t
t
) dt
i ? t
dt
i 4
t
5
i
i
3
Ex.1\Pg.46 Evaluate , where f (z) =x
2
+iy
2
and C is given by
z ( t) t i t t
Sol
n
:- z ( t) t it z ( t ) i
But z = x+iy
x =t , y=t
? f ( z ) ( x(t ) )
2
+i (y(t))
2
=t
2
+ i t
2
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( i ) dt
i ? t
dt
i 4
t
3
5
3
i
NOTE: Curve in Que 2 & 3 both are smoothly equivalent by thm 4.5
Qu e 3 ? f
w her e f ( z ) z
C is g iven by z ( t ) sin t i cos t , t
S oltio n f ( z ) z
x iy x i y
x
y
x
x
y
y
x
y
z(t) = sin t + i cost z ( t) cos t – i sin t
but z = x +i y
? x sin t , y = cos t
? x
2
+ y
2
=1
f(z(t)) = sin t –i cos t
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( sin t i cost ) ( cost i sin t ) dt
? ( sin t cost i ) dt
Ex pg E v aluate ? f
w her e f ( z ) z
C is g iven by z ( t ) R cos t i R sin t , t , R
S olu ti on f ( z ) z
x i y
x i y x
y
z ( t ) R cos t i R sin t z
( t ) R sin t i R cos t
But, z =x+iy
? ( ( ) ) R cos R
R sin R
cos R
sin R
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
?
cos i sin R
( R sin t i R cos t ) dt
? ( C ost iS in t ) ( S in t iCost ) dt
? ( sin t cos t i sin
t i cos
t cos t sin t ) dt
? ( sin
t cos
t ) dt
i ? . dt
i ( t )
i
T he cu r v e i s sai d to b e smooth iff z ( t) , excep t a t a f in it e n o. of p oi nt s.
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
i. e. iff x ( t) y ( t) ,
Smoothly equivalent Curve Curve C 1 g iven b y z z ( t) a t b is s . t . b . smo ot hly equivalent to Curve C 2 given
b y w w ( t) c t d . If there exist a on e t o one cont in uou sly d iff ma p p in g
? ,c , d - ,a , b - s. t .
(i) ? ( c) a , ? ( d ) b , ? ( t ) = ? t increasing
(ii) z ( ?( t) ) w ( t )
Que. 1 Prove that a smoothly equivalent curve is an equivalence relation.
Reflexive C given by z = z(t) is smoothly equivalent to itself.
S in ce ? can b e t aken a s i d en ti ty f un
c
.
Symmetric let C 1 be smoothly equivalent to C 2.
Let ? ,c, d - ,a , b - b e one to one sat isfy in g cod
n
?( c) a ?( d ) b & z ( ?( t ) ) w ( t) then
?
1
,a, b - ,c, d - w ill g iv es C 2 which is also smoothly equivalent to C 1
Transitive let C 1 : z=z(t) , a t b
C 2 w w ( t) c t d
C 3 r r ( t) e t f
If C 1 be smoothly equivalent to C 2
? ? a one to one map p i ng ? 1 ,c, d - ,a , b - s. t .
? 1 ( c) a, ? 1 ( d ) b z ( ? 1(t))=w(t)
and C 2 be smoothly equivalent to C 3 then
? 2 ( e ) c , ? 2 ( f ) d w ( ? 2(t))=r(t)
let ? ? 1 ° ? 2 then ? i s on e t o one such that
? ,e, f - ,a , b -
?( e) ( ? 1 ° ? 2 ) ( e) ? 1 (? 2 ( e) ) ? 1(c)=a
?( f ) ( ? 1 ° ? 2 ) ( f ) ? 1 (? 2 ( f ) ) ? 1(d)=b
also, z ( ?( t) ) z ( ( ? 1 ° ? 2)(t))
z ( ? 1 (? 2 ( t) ) ) w ( ? 2(t)) = r(t)
Therefore, C 1 is smoothly equivalent to C 3
Hence, a smoothly equivalent curve is an equivalence relation.
T hm . If C
C
are smo othly eq uiv ale nt cu r v e , then ? f
c
? f
c
Proof let C 1 :z = z(t) , a t b
C 2 :w = w(t) , c t d
Let C 1 & C 2 be smoothly equivalent, therefore there exists a mapping
? ,c, d - ,a , b - s. t .
?( c) a , ?( d ) b z ( ?( t ) ) w ( t)
Consider,
? ? f
? f ( z ) dz
? f ( z ( t ) ) z
( t ) dt
= , u
( z ( t) ) iv ( z ( t) ) -,x ( t ) iy ( t) -d t
= , u
( z ( t) ) x ( t ) d t v
( z ( t) ) y ( t) d t- i, u
( z ( t) ) y ( t ) d t v
( z ( t) ) x ( t ) d t …… …( i)
Consider,
? ? f
? f ( w ) dw
? f ( w ( t ) ) w
( t ) dt
= f
( z ( ? ( t) ) ) z (?( t ) ) ? ( t ) )
= , u
( z ( ? ( t) ) ) i v( z ( ?(t) ) ) - ,x ( ?( t ) ) i y ( ? ( t) ) -? ( t) d t
=[ u
( z ( ? ( t) ) x ( ? ( t) ) ? ( t) d t v
( z ( ? ( t) ) ) y ( ?( t ) ) ? ( t ) d t- i, u
( z ( ?( t) ) ) y ( ?(t) ) ? ( t) d t
+ v
( z ( ?(t) ) ) x ( ?( t ) ) ? ( t ) d t- ……( ii )
eq
n
(i) & (ii) are equal
by change of variable of real integral
ls o , ? x ( t )
dt ? y ( t )
???? y c ha n ge of va r ia b l e
Put ?(t) = r When
t =c then ?(c)=a & t =d then ?(d)=b
Page 4
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( t it ) dt
? ( t
i t
i t
t
) dt
i ? t
dt
i 4
t
5
i
i
3
Ex.1\Pg.46 Evaluate , where f (z) =x
2
+iy
2
and C is given by
z ( t) t i t t
Sol
n
:- z ( t) t it z ( t ) i
But z = x+iy
x =t , y=t
? f ( z ) ( x(t ) )
2
+i (y(t))
2
=t
2
+ i t
2
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( i ) dt
i ? t
dt
i 4
t
3
5
3
i
NOTE: Curve in Que 2 & 3 both are smoothly equivalent by thm 4.5
Qu e 3 ? f
w her e f ( z ) z
C is g iven by z ( t ) sin t i cos t , t
S oltio n f ( z ) z
x iy x i y
x
y
x
x
y
y
x
y
z(t) = sin t + i cost z ( t) cos t – i sin t
but z = x +i y
? x sin t , y = cos t
? x
2
+ y
2
=1
f(z(t)) = sin t –i cos t
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( sin t i cost ) ( cost i sin t ) dt
? ( sin t cost i ) dt
Ex pg E v aluate ? f
w her e f ( z ) z
C is g iven by z ( t ) R cos t i R sin t , t , R
S olu ti on f ( z ) z
x i y
x i y x
y
z ( t ) R cos t i R sin t z
( t ) R sin t i R cos t
But, z =x+iy
? ( ( ) ) R cos R
R sin R
cos R
sin R
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
?
cos i sin R
( R sin t i R cos t ) dt
? ( C ost iS in t ) ( S in t iCost ) dt
? ( sin t cos t i sin
t i cos
t cos t sin t ) dt
? ( sin
t cos
t ) dt
i ? . dt
i ( t )
i
T he cu r v e i s sai d to b e smooth iff z ( t) , excep t a t a f in it e n o. of p oi nt s.
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
i. e. iff x ( t) y ( t) ,
Smoothly equivalent Curve Curve C 1 g iven b y z z ( t) a t b is s . t . b . smo ot hly equivalent to Curve C 2 given
b y w w ( t) c t d . If there exist a on e t o one cont in uou sly d iff ma p p in g
? ,c , d - ,a , b - s. t .
(i) ? ( c) a , ? ( d ) b , ? ( t ) = ? t increasing
(ii) z ( ?( t) ) w ( t )
Que. 1 Prove that a smoothly equivalent curve is an equivalence relation.
Reflexive C given by z = z(t) is smoothly equivalent to itself.
S in ce ? can b e t aken a s i d en ti ty f un
c
.
Symmetric let C 1 be smoothly equivalent to C 2.
Let ? ,c, d - ,a , b - b e one to one sat isfy in g cod
n
?( c) a ?( d ) b & z ( ?( t ) ) w ( t) then
?
1
,a, b - ,c, d - w ill g iv es C 2 which is also smoothly equivalent to C 1
Transitive let C 1 : z=z(t) , a t b
C 2 w w ( t) c t d
C 3 r r ( t) e t f
If C 1 be smoothly equivalent to C 2
? ? a one to one map p i ng ? 1 ,c, d - ,a , b - s. t .
? 1 ( c) a, ? 1 ( d ) b z ( ? 1(t))=w(t)
and C 2 be smoothly equivalent to C 3 then
? 2 ( e ) c , ? 2 ( f ) d w ( ? 2(t))=r(t)
let ? ? 1 ° ? 2 then ? i s on e t o one such that
? ,e, f - ,a , b -
?( e) ( ? 1 ° ? 2 ) ( e) ? 1 (? 2 ( e) ) ? 1(c)=a
?( f ) ( ? 1 ° ? 2 ) ( f ) ? 1 (? 2 ( f ) ) ? 1(d)=b
also, z ( ?( t) ) z ( ( ? 1 ° ? 2)(t))
z ( ? 1 (? 2 ( t) ) ) w ( ? 2(t)) = r(t)
Therefore, C 1 is smoothly equivalent to C 3
Hence, a smoothly equivalent curve is an equivalence relation.
T hm . If C
C
are smo othly eq uiv ale nt cu r v e , then ? f
c
? f
c
Proof let C 1 :z = z(t) , a t b
C 2 :w = w(t) , c t d
Let C 1 & C 2 be smoothly equivalent, therefore there exists a mapping
? ,c, d - ,a , b - s. t .
?( c) a , ?( d ) b z ( ?( t ) ) w ( t)
Consider,
? ? f
? f ( z ) dz
? f ( z ( t ) ) z
( t ) dt
= , u
( z ( t) ) iv ( z ( t) ) -,x ( t ) iy ( t) -d t
= , u
( z ( t) ) x ( t ) d t v
( z ( t) ) y ( t) d t- i, u
( z ( t) ) y ( t ) d t v
( z ( t) ) x ( t ) d t …… …( i)
Consider,
? ? f
? f ( w ) dw
? f ( w ( t ) ) w
( t ) dt
= f
( z ( ? ( t) ) ) z (?( t ) ) ? ( t ) )
= , u
( z ( ? ( t) ) ) i v( z ( ?(t) ) ) - ,x ( ?( t ) ) i y ( ? ( t) ) -? ( t) d t
=[ u
( z ( ? ( t) ) x ( ? ( t) ) ? ( t) d t v
( z ( ? ( t) ) ) y ( ?( t ) ) ? ( t ) d t- i, u
( z ( ?( t) ) ) y ( ?(t) ) ? ( t) d t
+ v
( z ( ?(t) ) ) x ( ?( t ) ) ? ( t ) d t- ……( ii )
eq
n
(i) & (ii) are equal
by change of variable of real integral
ls o , ? x ( t )
dt ? y ( t )
???? y c ha n ge of va r ia b l e
Put ?(t) = r When
t =c then ?(c)=a & t =d then ?(d)=b
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
? f
= f
ALTERNATE
Let C 1 : z = z(t) , a t b
C 2 : w= w(t) , c t d
Suppose C 1 & C 2 be smoothly equivalent Curve,
? ? ,c, d - ,a , b - s. t.
?( c) = a , ?( d ) b & z ( ?( t) w ( t)
Consider,
c
f = f
(w)dw = f
( w ( t) ) w ( t) d t
= f
( z ( ? ( t) ) ) z (?( t ) ) ) ? ( t) d t p ut ?( t ) p
= f
( z ( p ) ) z (p) d p ? ( t) d t d p
c
f (z)dz
Def
n
. let C b e t he cu r v e giv en b y z z ( t) a t b then
C is d efine d b y z ( b a t) a t b .
(intuitively ?????????? ?????? , ) C has the sa me p o in ts se t of C , traced in th e rev erse d ir
n
.
ote C ler aly , C ( b ) C ( a)
C( a) C ( b )
F ur ther, ( c) ( t ) C ( b a t )
T heor em . Pro v e that ? f
? f
Proof : Consider,
c f f
( z ( b a t ) ) z (b a t) d t
, , * u
( z ( b a t ) )
i v( z ( b a t ) ) +* x ( b a t) ) iy ( b a t ) ) +--dt
, , u
( z ( b a t ) ) x ( b a t)
i v( z ( b a t ) ) x ( b a t ) ) i u ( b a t) y ( b a t) v ( z ( b a t ) y ( b a t) --d t
Put b a t w limit when t = a , w = b
d t d w t = b , w = a
dw d t
? , u( z ( w ) x ( w ) i v ( z ( w ) ) x ( w ) i u ( z ( w ) ) y ( w ) v ( z ( w ) ) y ( w ) - dw
f
( z ( w ) ) z ( w ) d w c f ( w ) d w c f
Alternate
c f = f
( z ( b a t) ) z ( b a t) ( ) d t
Put b a t w
d t d w
f
( z ( t) ) z (t )dt by the property of finite integral
= - c f alternate on remaing portion paper
E x 3 /p g S upp ose f( z ) let C b e smooth c ur v e , then c f (z)dz =?
Sol
n
c f (z)dz= f
(z)dz = f
( z ) z ( t ) d t z ( t) d t
= , z ( t ) -
z ( b ) z ( a)
NOTE let ? ?? b e comp lex num b er then ? « ß if |? | | ?? |
Thm 4.9 Let G(t) be a continuous complex fun
n
of t, then
G
( t) d t « | G |
dt ( absolute value inequality , G
( t) d t )
Proof: let G
(t)dt =Re
i R …… . ( i)
Then, e
G
(t)dt =e
i R e
i R … …. ( ii )
If G
?? (t)dt =0, then above
inequality is obviously true. If not
we write its value in polar form, say
eq
n
(i)
? | G
?? (t)dt| = R
Page 5
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( t it ) dt
? ( t
i t
i t
t
) dt
i ? t
dt
i 4
t
5
i
i
3
Ex.1\Pg.46 Evaluate , where f (z) =x
2
+iy
2
and C is given by
z ( t) t i t t
Sol
n
:- z ( t) t it z ( t ) i
But z = x+iy
x =t , y=t
? f ( z ) ( x(t ) )
2
+i (y(t))
2
=t
2
+ i t
2
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( t
i t
) ( i ) dt
i ? t
dt
i 4
t
3
5
3
i
NOTE: Curve in Que 2 & 3 both are smoothly equivalent by thm 4.5
Qu e 3 ? f
w her e f ( z ) z
C is g iven by z ( t ) sin t i cos t , t
S oltio n f ( z ) z
x iy x i y
x
y
x
x
y
y
x
y
z(t) = sin t + i cost z ( t) cos t – i sin t
but z = x +i y
? x sin t , y = cos t
? x
2
+ y
2
=1
f(z(t)) = sin t –i cos t
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
? ( sin t i cost ) ( cost i sin t ) dt
? ( sin t cost i ) dt
Ex pg E v aluate ? f
w her e f ( z ) z
C is g iven by z ( t ) R cos t i R sin t , t , R
S olu ti on f ( z ) z
x i y
x i y x
y
z ( t ) R cos t i R sin t z
( t ) R sin t i R cos t
But, z =x+iy
? ( ( ) ) R cos R
R sin R
cos R
sin R
? ? f
? f ( z ) dz
? f ( z ( t ) )
z
( t ) dt
?
cos i sin R
( R sin t i R cos t ) dt
? ( C ost iS in t ) ( S in t iCost ) dt
? ( sin t cos t i sin
t i cos
t cos t sin t ) dt
? ( sin
t cos
t ) dt
i ? . dt
i ( t )
i
T he cu r v e i s sai d to b e smooth iff z ( t) , excep t a t a f in it e n o. of p oi nt s.
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
i. e. iff x ( t) y ( t) ,
Smoothly equivalent Curve Curve C 1 g iven b y z z ( t) a t b is s . t . b . smo ot hly equivalent to Curve C 2 given
b y w w ( t) c t d . If there exist a on e t o one cont in uou sly d iff ma p p in g
? ,c , d - ,a , b - s. t .
(i) ? ( c) a , ? ( d ) b , ? ( t ) = ? t increasing
(ii) z ( ?( t) ) w ( t )
Que. 1 Prove that a smoothly equivalent curve is an equivalence relation.
Reflexive C given by z = z(t) is smoothly equivalent to itself.
S in ce ? can b e t aken a s i d en ti ty f un
c
.
Symmetric let C 1 be smoothly equivalent to C 2.
Let ? ,c, d - ,a , b - b e one to one sat isfy in g cod
n
?( c) a ?( d ) b & z ( ?( t ) ) w ( t) then
?
1
,a, b - ,c, d - w ill g iv es C 2 which is also smoothly equivalent to C 1
Transitive let C 1 : z=z(t) , a t b
C 2 w w ( t) c t d
C 3 r r ( t) e t f
If C 1 be smoothly equivalent to C 2
? ? a one to one map p i ng ? 1 ,c, d - ,a , b - s. t .
? 1 ( c) a, ? 1 ( d ) b z ( ? 1(t))=w(t)
and C 2 be smoothly equivalent to C 3 then
? 2 ( e ) c , ? 2 ( f ) d w ( ? 2(t))=r(t)
let ? ? 1 ° ? 2 then ? i s on e t o one such that
? ,e, f - ,a , b -
?( e) ( ? 1 ° ? 2 ) ( e) ? 1 (? 2 ( e) ) ? 1(c)=a
?( f ) ( ? 1 ° ? 2 ) ( f ) ? 1 (? 2 ( f ) ) ? 1(d)=b
also, z ( ?( t) ) z ( ( ? 1 ° ? 2)(t))
z ( ? 1 (? 2 ( t) ) ) w ( ? 2(t)) = r(t)
Therefore, C 1 is smoothly equivalent to C 3
Hence, a smoothly equivalent curve is an equivalence relation.
T hm . If C
C
are smo othly eq uiv ale nt cu r v e , then ? f
c
? f
c
Proof let C 1 :z = z(t) , a t b
C 2 :w = w(t) , c t d
Let C 1 & C 2 be smoothly equivalent, therefore there exists a mapping
? ,c, d - ,a , b - s. t .
?( c) a , ?( d ) b z ( ?( t ) ) w ( t)
Consider,
? ? f
? f ( z ) dz
? f ( z ( t ) ) z
( t ) dt
= , u
( z ( t) ) iv ( z ( t) ) -,x ( t ) iy ( t) -d t
= , u
( z ( t) ) x ( t ) d t v
( z ( t) ) y ( t) d t- i, u
( z ( t) ) y ( t ) d t v
( z ( t) ) x ( t ) d t …… …( i)
Consider,
? ? f
? f ( w ) dw
? f ( w ( t ) ) w
( t ) dt
= f
( z ( ? ( t) ) ) z (?( t ) ) ? ( t ) )
= , u
( z ( ? ( t) ) ) i v( z ( ?(t) ) ) - ,x ( ?( t ) ) i y ( ? ( t) ) -? ( t) d t
=[ u
( z ( ? ( t) ) x ( ? ( t) ) ? ( t) d t v
( z ( ? ( t) ) ) y ( ?( t ) ) ? ( t ) d t- i, u
( z ( ?( t) ) ) y ( ?(t) ) ? ( t) d t
+ v
( z ( ?(t) ) ) x ( ?( t ) ) ? ( t ) d t- ……( ii )
eq
n
(i) & (ii) are equal
by change of variable of real integral
ls o , ? x ( t )
dt ? y ( t )
???? y c ha n ge of va r ia b l e
Put ?(t) = r When
t =c then ?(c)=a & t =d then ?(d)=b
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
? f
= f
ALTERNATE
Let C 1 : z = z(t) , a t b
C 2 : w= w(t) , c t d
Suppose C 1 & C 2 be smoothly equivalent Curve,
? ? ,c, d - ,a , b - s. t.
?( c) = a , ?( d ) b & z ( ?( t) w ( t)
Consider,
c
f = f
(w)dw = f
( w ( t) ) w ( t) d t
= f
( z ( ? ( t) ) ) z (?( t ) ) ) ? ( t) d t p ut ?( t ) p
= f
( z ( p ) ) z (p) d p ? ( t) d t d p
c
f (z)dz
Def
n
. let C b e t he cu r v e giv en b y z z ( t) a t b then
C is d efine d b y z ( b a t) a t b .
(intuitively ?????????? ?????? , ) C has the sa me p o in ts se t of C , traced in th e rev erse d ir
n
.
ote C ler aly , C ( b ) C ( a)
C( a) C ( b )
F ur ther, ( c) ( t ) C ( b a t )
T heor em . Pro v e that ? f
? f
Proof : Consider,
c f f
( z ( b a t ) ) z (b a t) d t
, , * u
( z ( b a t ) )
i v( z ( b a t ) ) +* x ( b a t) ) iy ( b a t ) ) +--dt
, , u
( z ( b a t ) ) x ( b a t)
i v( z ( b a t ) ) x ( b a t ) ) i u ( b a t) y ( b a t) v ( z ( b a t ) y ( b a t) --d t
Put b a t w limit when t = a , w = b
d t d w t = b , w = a
dw d t
? , u( z ( w ) x ( w ) i v ( z ( w ) ) x ( w ) i u ( z ( w ) ) y ( w ) v ( z ( w ) ) y ( w ) - dw
f
( z ( w ) ) z ( w ) d w c f ( w ) d w c f
Alternate
c f = f
( z ( b a t) ) z ( b a t) ( ) d t
Put b a t w
d t d w
f
( z ( t) ) z (t )dt by the property of finite integral
= - c f alternate on remaing portion paper
E x 3 /p g S upp ose f( z ) let C b e smooth c ur v e , then c f (z)dz =?
Sol
n
c f (z)dz= f
(z)dz = f
( z ) z ( t ) d t z ( t) d t
= , z ( t ) -
z ( b ) z ( a)
NOTE let ? ?? b e comp lex num b er then ? « ß if |? | | ?? |
Thm 4.9 Let G(t) be a continuous complex fun
n
of t, then
G
( t) d t « | G |
dt ( absolute value inequality , G
( t) d t )
Proof: let G
(t)dt =Re
i R …… . ( i)
Then, e
G
(t)dt =e
i R e
i R … …. ( ii )
If G
?? (t)dt =0, then above
inequality is obviously true. If not
we write its value in polar form, say
eq
n
(i)
? | G
?? (t)dt| = R
Free coaching of B.Sc (h) maths & JAM
For more 8130648819
Let e
i
G(t) = A(t) + i B(t)
Where A(t) & B(t) are real value fun
n
of t.
e
G
(t)dt = (t)+i ( t) d t …. ( ii i )
? f r om eq
n
(ii) & (iii)
R= (t)+i (t)dt
(t)dt =R , (t)dt= 0
Now, R= (t)dt = r ea l ( e
G
(t))dt
| e
G
( t) | d t Re( z ) | z|
= | e
| | G
(t)|dt
= | G
(t)| dt
R | G
( t) | d t ……. (iv)
From eq
n
( i) | G
(t)dt| = |Re
i |
| G
(t)dt| =R …… …. . ( v )
? from eq
n
(iv) & (v)
| G
(t)dt |< | G |
dt
ALTERNATE
| G
(t)dt |< | G |
dt
By polar form, also G
(t)dt =R e
i
| G
(t)dt | =R & e
G
(t)dt=R
Taking the real part of both side of the above
R = Re (R) = Re( e
G
(t)dt)
= Re * e
G
(t)}dt
| e
G
(t)|dt using R e( z ) | z |
= | G
(t)|dt | e
i | = 1
Hence, desired inequality hold.
. L F or mu la/ L I ne q ulity Suppose that C is a (smooth) curve of length L, that f is continuous
on C, an d that , f ( i. e . | f | ) thr oug hou t C, then c f ( z ) d z L i. e . | c f(z)dz| <ML (M is the
upper bd of f)
Proof: let the curve C be given by z = z(t) =x(t)+i y(t)
? | f
(z)dz| = | f
( z ( t) ) z (t) d t|
| f
( z ( t) ) z ( t) | d t
= | f
( z ( t) ) | | z ( t ) | d t |
z ( t) | d t
=M |
x ( t) i y ( t) | d t v *x ( t ) +
* y ( t )
+
dt
=M v *
+
*
+
dt =M
dt
=M ds
=ML (where L = ds
= length of the Curve C or L= v * x ( t ) +
* y ( t )
+
dt
? | f
( z ) d z | L
Example/pg 48 let C be the unit circle and suppose f <<1 on C, then M=1, L=2 (length of the circle when
r ) an d c f(z)dz <<2 i. e. | c f ( z ) d z |
Sol
n
Here, M=1
L =length of the curve C = 2
y L f or mu la
| c f ( z ) d z | ? 2 =2
Read More