Page 1
Edurev123
7. Area, Surface and Volume
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? .
(2011 : 20 Marks).
Solution:
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or
(?? -1)
2
+?? 2
=1.
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
].
? The volume of the solid is
??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·?????????? [??? =?? cos ?? ,?? =?? sin ?? ]
=? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
?? 1
????
=4? ?
?? /2
-?? /2
?cos
4
?????? =4.2? ?
?? /2
0
?cos
4
?????? [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
=8·
3·1
4·2
·
?? 2
=
3?? 2
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =??
and ?? ?? +?? ?? =?? .
(2012: 20 Marks)
Solution:
The given surfaces are
?? 2
+?? 2
=9
?????? ?? 2
+?? 2
=9
The volume of the required solid is
Page 2
Edurev123
7. Area, Surface and Volume
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? .
(2011 : 20 Marks).
Solution:
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or
(?? -1)
2
+?? 2
=1.
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
].
? The volume of the solid is
??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·?????????? [??? =?? cos ?? ,?? =?? sin ?? ]
=? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
?? 1
????
=4? ?
?? /2
-?? /2
?cos
4
?????? =4.2? ?
?? /2
0
?cos
4
?????? [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
=8·
3·1
4·2
·
?? 2
=
3?? 2
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =??
and ?? ?? +?? ?? =?? .
(2012: 20 Marks)
Solution:
The given surfaces are
?? 2
+?? 2
=9
?????? ?? 2
+?? 2
=9
The volume of the required solid is
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and
?? ?? +?? ?? =???? .
(2016 : 15 Marks)
Solution:
Plane ?? +2?? +2?? =12 or
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and
6 from origin.
Cylinder: ?? 2
+?? 2
=16
Planes: ?? =0,?? =0
Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
????????
Page 3
Edurev123
7. Area, Surface and Volume
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? .
(2011 : 20 Marks).
Solution:
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or
(?? -1)
2
+?? 2
=1.
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
].
? The volume of the solid is
??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·?????????? [??? =?? cos ?? ,?? =?? sin ?? ]
=? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
?? 1
????
=4? ?
?? /2
-?? /2
?cos
4
?????? =4.2? ?
?? /2
0
?cos
4
?????? [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
=8·
3·1
4·2
·
?? 2
=
3?? 2
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =??
and ?? ?? +?? ?? =?? .
(2012: 20 Marks)
Solution:
The given surfaces are
?? 2
+?? 2
=9
?????? ?? 2
+?? 2
=9
The volume of the required solid is
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and
?? ?? +?? ?? =???? .
(2016 : 15 Marks)
Solution:
Plane ?? +2?? +2?? =12 or
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and
6 from origin.
Cylinder: ?? 2
+?? 2
=16
Planes: ?? =0,?? =0
Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
????????
=??
?
?
v
1+(-
1
2
)
2
+(-1)
2
???????? [
?? =-
?? 2
-?? +6
?? ?? =-
1
2
,?? ?? =-1
]
=
3
2
??
?? ?????????
(A: Projection of surface on ???? -plane ?? 2
+?? 2
=16,?? =0,?? =0 )
=
3
2
·[
1
4
?? (4)
2
]=6??
7.4 The ellipse
?? ?? ?? ?? +
?? ?? ?? ?? =?? revolves about ?? -axis. Find the volume of solid of
revolves.
(2018 : 13 Marks)
Solution:
Given ellipse is
?? 2
?? 2
+
?? 2
?? 2
=1.
If it is revolved around ?? -axis, then each cross-section is circular disc of radius ?? . Taking
an element of thickness ???? and iength ???? , we get area of this cross-section as 2???????????? .
? Volume, V=?
?? =-a
?? =?? ??
?? =0
?? =?? v1-
?? 2
?? 2
2????????????
? ?? =?
?? =-2
?? ?2?? [
?? 2
2
]
?? =0
?? =?? v1-
?? 2
?? 2
????
? ?? =?? ?
?? =-?? ?? ??? 2
(1-
?? 2
?? 2
)???? =?? ?? 2
[2?? -
2?? 3
]
Page 4
Edurev123
7. Area, Surface and Volume
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? .
(2011 : 20 Marks).
Solution:
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or
(?? -1)
2
+?? 2
=1.
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
].
? The volume of the solid is
??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·?????????? [??? =?? cos ?? ,?? =?? sin ?? ]
=? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
?? 1
????
=4? ?
?? /2
-?? /2
?cos
4
?????? =4.2? ?
?? /2
0
?cos
4
?????? [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
=8·
3·1
4·2
·
?? 2
=
3?? 2
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =??
and ?? ?? +?? ?? =?? .
(2012: 20 Marks)
Solution:
The given surfaces are
?? 2
+?? 2
=9
?????? ?? 2
+?? 2
=9
The volume of the required solid is
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and
?? ?? +?? ?? =???? .
(2016 : 15 Marks)
Solution:
Plane ?? +2?? +2?? =12 or
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and
6 from origin.
Cylinder: ?? 2
+?? 2
=16
Planes: ?? =0,?? =0
Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
????????
=??
?
?
v
1+(-
1
2
)
2
+(-1)
2
???????? [
?? =-
?? 2
-?? +6
?? ?? =-
1
2
,?? ?? =-1
]
=
3
2
??
?? ?????????
(A: Projection of surface on ???? -plane ?? 2
+?? 2
=16,?? =0,?? =0 )
=
3
2
·[
1
4
?? (4)
2
]=6??
7.4 The ellipse
?? ?? ?? ?? +
?? ?? ?? ?? =?? revolves about ?? -axis. Find the volume of solid of
revolves.
(2018 : 13 Marks)
Solution:
Given ellipse is
?? 2
?? 2
+
?? 2
?? 2
=1.
If it is revolved around ?? -axis, then each cross-section is circular disc of radius ?? . Taking
an element of thickness ???? and iength ???? , we get area of this cross-section as 2???????????? .
? Volume, V=?
?? =-a
?? =?? ??
?? =0
?? =?? v1-
?? 2
?? 2
2????????????
? ?? =?
?? =-2
?? ?2?? [
?? 2
2
]
?? =0
?? =?? v1-
?? 2
?? 2
????
? ?? =?? ?
?? =-?? ?? ??? 2
(1-
?? 2
?? 2
)???? =?? ?? 2
[2?? -
2?? 3
]
? ?? =
4?? 3
?? ?? 2
7.5 Show that the entire area of the Asteroid. ?? ?? /?? +?? ?? /?? =?? ?? /?? is
?? ?? ?? ?? ?? .
[2021 : 15 marks]
Solution:
The parametric equations of the given curve,
?? 2/3
+?? 2/3
=?? 2/3
can be taken as ?? =?? cos
3
?? ,?? =?? sin
3
??
Here, C is the simple closed curve traversed in +ve direction by the whole area of the
given hypocycloid.
At the point ?? ,?? =0 and when after one complete round in anti clockwise sense aiong
the curve ?? we come back to ?? , then at ?? ,?? =2?? .
The area bounded by the given hypocycloid is
Page 5
Edurev123
7. Area, Surface and Volume
7.1 Find the volume of the solid that lies under the paraboloid ?? =?? ?? +?? ?? above
the ???? -plane and inside the cylinder ?? ?? +?? ?? =?? ?? .
(2011 : 20 Marks).
Solution:
The solid lies above the disk ?? whose boundary circle has the equation ?? 2
+?? 2
=2?? or
(?? -1)
2
+?? 2
=1.
Its equation in polar co-ordinates is given by ?? =2cos ?? where ?? is in [-
?? 2
,
?? 2
].
? The volume of the solid is
??
?? ?(?? 2
+?? 2
)???? =? ?
?? /2
-?? /2
?? ?
2cos ?? 0
??? 2
·?????????? [??? =?? cos ?? ,?? =?? sin ?? ]
=? ?
?? /2
-?? /2
?[
?? 4
4
]
0
2cos ?? ???? =? ?
?? /2
-?? /2
?
16cos
4
?? 1
????
=4? ?
?? /2
-?? /2
?cos
4
?????? =4.2? ?
?? /2
0
?cos
4
?????? [?? ?
?? -?? ??? (?? )???? =2? ?
?? 0
??? (?? )???? if ?? (-?? )=?? (?? )]
=8·
3·1
4·2
·
?? 2
=
3?? 2
7.2 Compute the volume of the solid enclosed between the surfaces ?? ?? +?? ?? =??
and ?? ?? +?? ?? =?? .
(2012: 20 Marks)
Solution:
The given surfaces are
?? 2
+?? 2
=9
?????? ?? 2
+?? 2
=9
The volume of the required solid is
?? =? ?
3
?? =-3
?? ?
v9-?? 2
?? =-v9-?? 2
?? ?
v9-?? 2
?? =-v9-?? 2
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?? ?
v9-?? 2
?? =0
????????????? =8? ?
3
?? =0
?? ?
v9-?? 2
?? =0
?
v
9-?? 2
???????? =8? ?
3
?? =0
?
v
9-?? 2
·
v
9-?? 2
???? =8? ?
3
?? =0
?(9-?? 2
)????
=8(9?? -
?? 3
3
)
0
3
=8(27-9)=8×18=144 cubic units
7.3 Find the surface area of the plane ?? +?? ?? +?? ?? =???? cut off by ?? =?? ,?? =?? and
?? ?? +?? ?? =???? .
(2016 : 15 Marks)
Solution:
Plane ?? +2?? +2?? =12 or
?? 12
+
?? 6
+
?? 6
=1 cuts the co-ordinates at a distance of 12,6 and
6 from origin.
Cylinder: ?? 2
+?? 2
=16
Planes: ?? =0,?? =0
Surface Area =??
?? v1+?? ?? 2
+?? ?? 2
????????
=??
?
?
v
1+(-
1
2
)
2
+(-1)
2
???????? [
?? =-
?? 2
-?? +6
?? ?? =-
1
2
,?? ?? =-1
]
=
3
2
??
?? ?????????
(A: Projection of surface on ???? -plane ?? 2
+?? 2
=16,?? =0,?? =0 )
=
3
2
·[
1
4
?? (4)
2
]=6??
7.4 The ellipse
?? ?? ?? ?? +
?? ?? ?? ?? =?? revolves about ?? -axis. Find the volume of solid of
revolves.
(2018 : 13 Marks)
Solution:
Given ellipse is
?? 2
?? 2
+
?? 2
?? 2
=1.
If it is revolved around ?? -axis, then each cross-section is circular disc of radius ?? . Taking
an element of thickness ???? and iength ???? , we get area of this cross-section as 2???????????? .
? Volume, V=?
?? =-a
?? =?? ??
?? =0
?? =?? v1-
?? 2
?? 2
2????????????
? ?? =?
?? =-2
?? ?2?? [
?? 2
2
]
?? =0
?? =?? v1-
?? 2
?? 2
????
? ?? =?? ?
?? =-?? ?? ??? 2
(1-
?? 2
?? 2
)???? =?? ?? 2
[2?? -
2?? 3
]
? ?? =
4?? 3
?? ?? 2
7.5 Show that the entire area of the Asteroid. ?? ?? /?? +?? ?? /?? =?? ?? /?? is
?? ?? ?? ?? ?? .
[2021 : 15 marks]
Solution:
The parametric equations of the given curve,
?? 2/3
+?? 2/3
=?? 2/3
can be taken as ?? =?? cos
3
?? ,?? =?? sin
3
??
Here, C is the simple closed curve traversed in +ve direction by the whole area of the
given hypocycloid.
At the point ?? ,?? =0 and when after one complete round in anti clockwise sense aiong
the curve ?? we come back to ?? , then at ?? ,?? =2?? .
The area bounded by the given hypocycloid is
=
1
2
?
0
1
(?????? -?????? ) by Green's theorem,
=
1
2
? ?
2?? ?? =0
?(?? ????
????
-?? ????
????
)???? , where ?? =?? cos
3
?? ,?? =?? sin
3
?? =
1
2
? ?
2?? 0
?[?? cos
3
?? ×3?? sin
2
?? cos ?? -?? sin
3
?? (-3?? cos
2
?? sin ?? )]???? ,
=
3?? 2
2
? ?
2?? 0
?(cos
4
?? sin
2
?? +sin
4
?? cos
2
?? )????
=2×
3?? 2
2
? ?
?? 0
?(cos
4
?? sin
2
?? +sin
4
?? cos
2
?? )????
=4×
3?? 2
2
? ?
?? /2
0
?(cos
4
?? sin
2
?? +sin
4
?? cos
2
?? )????
=6?? 2
[
3·1·1
6·4·2
×
?? 2
+
3·1·1
6·4·2
×
?? 2
]=6?? 2
×
?? 16
=
3?? ?? 2
8
7.6 Use double integration to calculate the area common to the circle ?? ?? +?? ?? =??
and the parabola ?? ?? =?? ?? .
(2022 : 15 marks)
Solution:
The given equations are
?? 2
+?? 2
=4 (??)
?? 2
=3?? (???? )
Read More