Download, print and study this document offline |
Page 1 Edurev123 Analytic Geometry 1. Straight lines 1.1 A line is drawn through a variable point on the ellipse ?? ?? ?? ?? + ?? ?? ?? ?? =?? ,?? =?? to meet fixed lines ?? =???? , ?? =?? and ?? =-???? ,?? =-?? . Find the locus of the line. (2009 : 12 Marks) Solution: Approach: Use general equation of line intersecting two lines given in planar form. Given fixed lines are ?? -???? =0,?? -0=0 (??) ?? +???? =0,?? +?? =0 (???? ) General equation of line intersecting both (?? -???? )+?? 1 (?? -?? )=0=(?? +???? )+?? 2 (?? +?? ) (?????? ) If it meets ellipse we eliminate ?? 1 and ?? 2 Putting ?? =0 in (iii) ?? -???? -?? 1 ?? =0;?? +???? +?? 2 ?? =0 ? ?? -?? 2 ?? +?? 1 ?? = ?? -(?? 1 +?? 2 ) = ?? 2?? ? ?? = -(?? 1 +?? 2 )?? 2?? ;?? = (?? 1 -?? 2 )?? 2 Putting this in equation of ellipse (?? 1 +?? 2 ) 2 ?? 2 4?? 2 ?? 2 + (?? 1 -?? 2 ) 2 ?? 2 4?? 2 =1 (?? 1 +?? 2 ) 2 ?? 2 ?? 2 +(?? 1 -?? 2 ) 2 ?? 2 ?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 Substituting ?? 1 and ?? 2 from (iii) {( ???? -?? ?? -?? )+(- ???? +?? ?? +?? )} 2 ?? 2 ?? 2 +{( ???? -?? ?? -?? )+( ???? +?? ?? +?? )} 2 ×?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 Page 2 Edurev123 Analytic Geometry 1. Straight lines 1.1 A line is drawn through a variable point on the ellipse ?? ?? ?? ?? + ?? ?? ?? ?? =?? ,?? =?? to meet fixed lines ?? =???? , ?? =?? and ?? =-???? ,?? =-?? . Find the locus of the line. (2009 : 12 Marks) Solution: Approach: Use general equation of line intersecting two lines given in planar form. Given fixed lines are ?? -???? =0,?? -0=0 (??) ?? +???? =0,?? +?? =0 (???? ) General equation of line intersecting both (?? -???? )+?? 1 (?? -?? )=0=(?? +???? )+?? 2 (?? +?? ) (?????? ) If it meets ellipse we eliminate ?? 1 and ?? 2 Putting ?? =0 in (iii) ?? -???? -?? 1 ?? =0;?? +???? +?? 2 ?? =0 ? ?? -?? 2 ?? +?? 1 ?? = ?? -(?? 1 +?? 2 ) = ?? 2?? ? ?? = -(?? 1 +?? 2 )?? 2?? ;?? = (?? 1 -?? 2 )?? 2 Putting this in equation of ellipse (?? 1 +?? 2 ) 2 ?? 2 4?? 2 ?? 2 + (?? 1 -?? 2 ) 2 ?? 2 4?? 2 =1 (?? 1 +?? 2 ) 2 ?? 2 ?? 2 +(?? 1 -?? 2 ) 2 ?? 2 ?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 Substituting ?? 1 and ?? 2 from (iii) {( ???? -?? ?? -?? )+(- ???? +?? ?? +?? )} 2 ?? 2 ?? 2 +{( ???? -?? ?? -?? )+( ???? +?? ?? +?? )} 2 ×?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 ?[(???? -?? )(?? +?? )-(???? +?? )(?? -?? )] 2 ?? 2 ?? 2 +[(???? -?? )(?? +?? )+(???? +?? )(?? -?? )] 2 ?? 2 ?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 (?? 2 -?? 2 ) 2 ?[?????? -???? ] 2 ?? 2 ?? 2 +[?????? -???? ] 2 ?? 2 ?? 2 ?? 2 =?? 2 ?? 2 ?? 2 (?? 2 -?? 2 ) 2 which is required locus. 1.2 Prove that two of the straight lines represented by the equation ?? ?? +?? ?? ?? ?? +???? ?? ?? +?? ?? =?? will be at right angles, if ?? +?? =-?? . (2012 : 12 Marks) Solution: The given equation is a homogeneous equation of third degree and hence it represents three straight lines through the origin. Let ?? =???? be any of these lines. Replacing ?? ?? by min?? 3 +?? ?? 2 ?? +???? ?? 2 +?? 3 =0 or 1+?? ?? ?? +?? ?? 2 ?? 2 + ?? 3 ?? 3 =0, we get ?? 3 +?? ?? 2 +???? +1=0 (??) Let ?? 1 ,?? 2 ,?? 3 be its roots, then ?? 1 ·?? 2 ·?? 3 =-1 But, two of these limes, say with slopes, ?? 1 and ?? 2 , are at right angles, then, ?? 1 ·?? 2 =-1 Thus, (-?? 3 )=1 ???? ?? 3 =1 But ?? 3 is a root of (i) ? 1+?? +?? +1=0 ???? ?? +?? =-2 1.3 Verify if the lines ?? -?? +?? ?? -?? = ?? -?? ?? = ?? -?? -?? ?? +?? and ?? -?? +?? ?? -?? = ?? -?? ?? = ?? -?? -?? ?? +?? are coplanar. If yes, then find the equation of the plane in which they lie? (2014: 7 Marks) Solution: Two straight lines Page 3 Edurev123 Analytic Geometry 1. Straight lines 1.1 A line is drawn through a variable point on the ellipse ?? ?? ?? ?? + ?? ?? ?? ?? =?? ,?? =?? to meet fixed lines ?? =???? , ?? =?? and ?? =-???? ,?? =-?? . Find the locus of the line. (2009 : 12 Marks) Solution: Approach: Use general equation of line intersecting two lines given in planar form. Given fixed lines are ?? -???? =0,?? -0=0 (??) ?? +???? =0,?? +?? =0 (???? ) General equation of line intersecting both (?? -???? )+?? 1 (?? -?? )=0=(?? +???? )+?? 2 (?? +?? ) (?????? ) If it meets ellipse we eliminate ?? 1 and ?? 2 Putting ?? =0 in (iii) ?? -???? -?? 1 ?? =0;?? +???? +?? 2 ?? =0 ? ?? -?? 2 ?? +?? 1 ?? = ?? -(?? 1 +?? 2 ) = ?? 2?? ? ?? = -(?? 1 +?? 2 )?? 2?? ;?? = (?? 1 -?? 2 )?? 2 Putting this in equation of ellipse (?? 1 +?? 2 ) 2 ?? 2 4?? 2 ?? 2 + (?? 1 -?? 2 ) 2 ?? 2 4?? 2 =1 (?? 1 +?? 2 ) 2 ?? 2 ?? 2 +(?? 1 -?? 2 ) 2 ?? 2 ?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 Substituting ?? 1 and ?? 2 from (iii) {( ???? -?? ?? -?? )+(- ???? +?? ?? +?? )} 2 ?? 2 ?? 2 +{( ???? -?? ?? -?? )+( ???? +?? ?? +?? )} 2 ×?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 ?[(???? -?? )(?? +?? )-(???? +?? )(?? -?? )] 2 ?? 2 ?? 2 +[(???? -?? )(?? +?? )+(???? +?? )(?? -?? )] 2 ?? 2 ?? 2 ?? 2 =4?? 2 ?? 2 ?? 2 (?? 2 -?? 2 ) 2 ?[?????? -???? ] 2 ?? 2 ?? 2 +[?????? -???? ] 2 ?? 2 ?? 2 ?? 2 =?? 2 ?? 2 ?? 2 (?? 2 -?? 2 ) 2 which is required locus. 1.2 Prove that two of the straight lines represented by the equation ?? ?? +?? ?? ?? ?? +???? ?? ?? +?? ?? =?? will be at right angles, if ?? +?? =-?? . (2012 : 12 Marks) Solution: The given equation is a homogeneous equation of third degree and hence it represents three straight lines through the origin. Let ?? =???? be any of these lines. Replacing ?? ?? by min?? 3 +?? ?? 2 ?? +???? ?? 2 +?? 3 =0 or 1+?? ?? ?? +?? ?? 2 ?? 2 + ?? 3 ?? 3 =0, we get ?? 3 +?? ?? 2 +???? +1=0 (??) Let ?? 1 ,?? 2 ,?? 3 be its roots, then ?? 1 ·?? 2 ·?? 3 =-1 But, two of these limes, say with slopes, ?? 1 and ?? 2 , are at right angles, then, ?? 1 ·?? 2 =-1 Thus, (-?? 3 )=1 ???? ?? 3 =1 But ?? 3 is a root of (i) ? 1+?? +?? +1=0 ???? ?? +?? =-2 1.3 Verify if the lines ?? -?? +?? ?? -?? = ?? -?? ?? = ?? -?? -?? ?? +?? and ?? -?? +?? ?? -?? = ?? -?? ?? = ?? -?? -?? ?? +?? are coplanar. If yes, then find the equation of the plane in which they lie? (2014: 7 Marks) Solution: Two straight lines ?? -?? 1 ?? 1 = ?? -?? 1 ?? 1 = ?? -?? 1 ?? 1 and ?? -?? 2 ?? 2 = ?? -?? 2 ?? 2 = ?? -?? 2 ?? 2 are coplanar if | ?? 2 -?? 1 ?? 2 -?? 1 ?? 2 -?? 1 ?? 1 ?? 1 ?? 1 ?? 2 ?? 2 ?? 2 |=0 And equation of plane containing them, is | ?? -?? 1 ?? -?? 1 ?? -?? 1 ?? 1 ?? 1 ?? 1 ?? 2 ?? 2 ?? 2 |=0 Here, in our case, | (?? -?? )-(?? -?? ) ?? -?? ?? +?? -(?? +?? ) ?? -?? ?? ?? +?? ?? -?? ?? ?? +?? | ?? 1 ??? 1 -?? 2 ?? 3 ??? 3 -?? 2 =| ?? -?? ?? -?? ?? -?? -?? ?? ?? -?? ?? ?? |=0 as ?? 1 =-?? 3 Hence, the given lines are coplanar. The equation of the plane containing thein, is | ?? -(?? -?? ) ?? -?? ?? -(?? +?? ) ?? -?? ?? ?? +?? ?? -?? ?? ?? +?? |=0. Applying ?? 1 ??? 1 -?? 2 ?? 3 ??? 3 -?? 2 | ?? -?? +?? ?? -?? ?? -?? -?? -?? ?? ?? -?? ?? ?? |=0?| ?? -2?? +?? ?? -?? ?? -?? -?? 0 ?? ?? 0 ?? ?? |=0 as ?? 1 ??? 1 +?? 3 ? ?? -2?? +?? =0Read More
387 videos|203 docs
|
1. What is the eligibility criteria for the UPSC exam? |
2. How many attempts are allowed for the UPSC exam? |
3. What is the age limit for the UPSC exam? |
4. What is the syllabus for the UPSC exam? |
5. How is the UPSC exam conducted? |
|
Explore Courses for UPSC exam
|