UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Shortest Distance between Two Skew lines

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
Page 2


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
2.2 Find the shortest distance between the skew lines, 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and 
?? +?? -?? =
?? +?? ?? =
?? -?? ?? . 
(2017 : 10 Marks) 
Solution: 
Shortest distance lies along a direction which is perpendicular to both lines and given by 
the cross-product of vectors along given two lines, ?? 1
,?? 2
. 
???  =|
?? ?? ?? 3 -1 1
-3 2 4
|
 =??(-4-2)-?? (12+3)+?? (6-3)
 =-6?? -15?? +3?? =-3(2?? +5?? -?? )
 
?                                                 ??ˆ =
1
v30
(2?? +5?? -?? ) 
 
S.D. is the projection of ???? along ??ˆ. 
                                    ???? =????
????? 
·??ˆ 
=
1
v30
[13-(-3))2+(8-(-7))5-(3-6)·1]
 =
1
v30
(12+75+3)=
90
v30
 =3v30
 
2.3 Find the shortest distance between the lines 
Page 3


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
2.2 Find the shortest distance between the skew lines, 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and 
?? +?? -?? =
?? +?? ?? =
?? -?? ?? . 
(2017 : 10 Marks) 
Solution: 
Shortest distance lies along a direction which is perpendicular to both lines and given by 
the cross-product of vectors along given two lines, ?? 1
,?? 2
. 
???  =|
?? ?? ?? 3 -1 1
-3 2 4
|
 =??(-4-2)-?? (12+3)+?? (6-3)
 =-6?? -15?? +3?? =-3(2?? +5?? -?? )
 
?                                                 ??ˆ =
1
v30
(2?? +5?? -?? ) 
 
S.D. is the projection of ???? along ??ˆ. 
                                    ???? =????
????? 
·??ˆ 
=
1
v30
[13-(-3))2+(8-(-7))5-(3-6)·1]
 =
1
v30
(12+75+3)=
90
v30
 =3v30
 
2.3 Find the shortest distance between the lines 
?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? ?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? 
and ?????? ?? -axis. 
(2018 : 12 Marks) 
Solution: 
        The equation of ?? -axis is ?? =?? =0 
?     Any plane, ?? , through ?? -axis can be written as 
??¨+???? =0 (??) 
       Further, any plane ?? 2
, through given set of planes is 
                                                 ?? 1
?? +?? 1
?? +?? 1
?? +?? 1
+?? (?? 2
?? +?? 2
?? +?? 2
?? +?? 2
)=0 
 i.e.,                   (?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +?? 1
+?? ?? 2
=0 (???? ) 
For shortest distance ?? 1
 and ?? 2
 should be parallel. 
 ?                                           
?? 1
+?? ?? 2
1
=
?? 1
+???
?? 2
?? =
?? 1
+?? ?? 2
0
 i.e.,                                         ?? 1
+?? ?? 2
=0
 ?                                                         ?? =
?? 1
?? 2
 
? equation of ?? 2
 is 
(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
)?? 2
=0 
Shortest distance, 
?? =
|?? 1
+?? ?? 2
-0|
v(?? 1
+?? ?? 2
)
2
+(?? 1
+?? ?? 2
)
2
+0
2
?? =
|?? 2
?? 1
+?? 1
?? 2
|
v(?? 2
?? 1
-?? 1
?? 2
)
2
+(?? 2
?? 1
-?? 1
?? 2
)
2
 
2.4 Show that the lines 
?? +?? -?? =
?? -?? ?? =
?? +?? ?? and 
?? ?? =
?? -?? -?? =
?? +?? ?? intersect. Find the 
coordinates of the point of intersection and the equation of the plane containing 
them. 
(2019: 10 Marks) 
Page 4


Edurev123 
2. Shortest Distance between Two Skew 
lines 
2.1 Find the shortest distance between the lines 
?? -?? ?? =
?? -?? ?? =?? -?? and ?? -???? =?? =
?? . For what value of ?? will the two lines intersect? 
(2016 : 10 Marks) 
Solution: 
Lines are : 
?? 1
·
?? -1
2
=
?? -2
4
=
?? -3
1
?? 2
:
?? 1
=
?? ?? =
?? 0
 [
?? -???? =0
?? =0
]
 
 
?? 1
(1,2,3) on ?? 1
;?? 2
(0,0,0) on ?? 2
 
Shortest distance (SD) is the projection of ?? 1
?? 2
 on ???? which is perpendicular to both 
lines. Direction ratio's of ???? : 
|
?? ?? ?? 2 4 1
1 ?? 0
| =??(0-?? )-?? (0-1)+?? (2?? -4)
 =-???? +?? +(2?? -4)?? ???? =
1
v?? 2
+1+(2?? -4)
2
[-?? (1-0)+1(2-0)+(2?? -4)(3-0)
 =|
5?? -10
v5?? 2
-16?? +17
|
 
The lines will intersect if, ???? =0, i.e. 5?? -10=0??? =2. 
2.2 Find the shortest distance between the skew lines, 
?? -?? ?? =
?? -?? ?? =
?? -?? ?? and 
?? +?? -?? =
?? +?? ?? =
?? -?? ?? . 
(2017 : 10 Marks) 
Solution: 
Shortest distance lies along a direction which is perpendicular to both lines and given by 
the cross-product of vectors along given two lines, ?? 1
,?? 2
. 
???  =|
?? ?? ?? 3 -1 1
-3 2 4
|
 =??(-4-2)-?? (12+3)+?? (6-3)
 =-6?? -15?? +3?? =-3(2?? +5?? -?? )
 
?                                                 ??ˆ =
1
v30
(2?? +5?? -?? ) 
 
S.D. is the projection of ???? along ??ˆ. 
                                    ???? =????
????? 
·??ˆ 
=
1
v30
[13-(-3))2+(8-(-7))5-(3-6)·1]
 =
1
v30
(12+75+3)=
90
v30
 =3v30
 
2.3 Find the shortest distance between the lines 
?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? ?? ?? ?? +?? ?? ?? +?? ?? ?? +?? ?? =?? 
and ?????? ?? -axis. 
(2018 : 12 Marks) 
Solution: 
        The equation of ?? -axis is ?? =?? =0 
?     Any plane, ?? , through ?? -axis can be written as 
??¨+???? =0 (??) 
       Further, any plane ?? 2
, through given set of planes is 
                                                 ?? 1
?? +?? 1
?? +?? 1
?? +?? 1
+?? (?? 2
?? +?? 2
?? +?? 2
?? +?? 2
)=0 
 i.e.,                   (?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +(?? 1
+?? ?? 2
)?? +?? 1
+?? ?? 2
=0 (???? ) 
For shortest distance ?? 1
 and ?? 2
 should be parallel. 
 ?                                           
?? 1
+?? ?? 2
1
=
?? 1
+???
?? 2
?? =
?? 1
+?? ?? 2
0
 i.e.,                                         ?? 1
+?? ?? 2
=0
 ?                                                         ?? =
?? 1
?? 2
 
? equation of ?? 2
 is 
(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
?? 2
)?? +(?? 1
-
?? 1
?? 2
)?? 2
=0 
Shortest distance, 
?? =
|?? 1
+?? ?? 2
-0|
v(?? 1
+?? ?? 2
)
2
+(?? 1
+?? ?? 2
)
2
+0
2
?? =
|?? 2
?? 1
+?? 1
?? 2
|
v(?? 2
?? 1
-?? 1
?? 2
)
2
+(?? 2
?? 1
-?? 1
?? 2
)
2
 
2.4 Show that the lines 
?? +?? -?? =
?? -?? ?? =
?? +?? ?? and 
?? ?? =
?? -?? -?? =
?? +?? ?? intersect. Find the 
coordinates of the point of intersection and the equation of the plane containing 
them. 
(2019: 10 Marks) 
Solution: 
Any point on the line 
?? +1
-3
=
?? -3
2
=
?? +2
1
 
is                                                            (-1-3?? ,3+2?? ,-2+
?? )                                               …(??) 
Similarly, any part on the line 
?? 1
=
?? -7
-3
=
?? +7
2
 
is                                                              (?? 2
,7-3?? 1
,-7+
2?? -1
)                                               …(???? )                 
If the two given lines intersect then for some value of ?? and ?? 2
 the two above points (i) 
and (ii) must coincide. i.e., 
 -1-3?? =?? 1
3+2?? =7-3?? 1
 -2+?? =-7+2?? -1
 
Solving the first two of these equations, we get 
?? =-1,?? 1
=2 
The so values of ?? and ?? ' satisfy the third equation also. Hence, the given lines intersect. 
Substituting these values ?? and ?? in (1) or (2) we get the required coordinates of the 
point of intersection as (2,1,-3) , 
Also, the equation of the plane containing the given lines is 
|
?? +1 ?? -3 ?? +2
-3 2 1
1 -3 2
|=0 
?(?? +1)(4+3)-(?? -3)(-6-1)+(?? +2)(9-2) 
=0 
                       ?? +?? +?? =0 
which is the required equation. 
 
Read More
387 videos|203 docs

Top Courses for UPSC

387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Extra Questions

,

ppt

,

Previous Year Questions with Solutions

,

mock tests for examination

,

Exam

,

shortcuts and tricks

,

Important questions

,

study material

,

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC

,

Summary

,

Semester Notes

,

Viva Questions

,

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC

,

pdf

,

practice quizzes

,

Free

,

Shortest Distance between Two Skew lines | Mathematics Optional Notes for UPSC

,

Objective type Questions

,

MCQs

,

past year papers

,

video lectures

;