Page 1
Edurev123
4. Sphere and its Properties
4.1 Find the equation of the sphere having its Centre on the plane ?? ?? -?? ?? -?? =??
and passing through the ci zle
?? ?? +?? ?? +?? ?? -???? ?? -?? ?? +?? ?? +?? =?? ?? ?? +?? ?? -?? ?? +?? =??
(2009 : 12 Marks)
Solution:
Approach: General equation of sphere through any circle is used. The parameter san be
found by the Centre satisfying equation of plane.
General equation of a sphere passing through the circle is
?? +???? =0
or (?? 2
+?? 2
+?? 2
-12?? -3?? +4?? +8)+?? (3?? +4?? -5?? +3)=0
i.e., ?? 2
+?? 2
+?? 2
+(3?? -12)?? +(4?? -3)?? +(4-5?? )?? +3?? +8=0
The centre of the sphere is (
3?? -12
2
),(
4?? -3
2
),(
4-5?? 2
) . This lies on the given plane if
-[4(
3?? -12
2
)-5(
4?? -3
2
)-(
4-5?? 2
)] =3
? 3?? +37=6
? ?? =
-31
3
? Required sphere is
?? 2
+?? 2
+?? 2
-43?? -
133
3
?? +
167
3
?? -23=0
4.2 Show that the plane ?? +?? -?? ?? =?? cuts the sphere ?? ?? +?? ?? +?? ?? -?? +?? =?? in a
circle of radius 1 and find the equation of the sphere which has this circle as great
circle.
(2010: 12 Marks)
Solution:
Given : Equation of circle is ?? 2
+?? 2
+?? 2
-?? +?? =2, Plane =?? +?? -2?? =3
Page 2
Edurev123
4. Sphere and its Properties
4.1 Find the equation of the sphere having its Centre on the plane ?? ?? -?? ?? -?? =??
and passing through the ci zle
?? ?? +?? ?? +?? ?? -???? ?? -?? ?? +?? ?? +?? =?? ?? ?? +?? ?? -?? ?? +?? =??
(2009 : 12 Marks)
Solution:
Approach: General equation of sphere through any circle is used. The parameter san be
found by the Centre satisfying equation of plane.
General equation of a sphere passing through the circle is
?? +???? =0
or (?? 2
+?? 2
+?? 2
-12?? -3?? +4?? +8)+?? (3?? +4?? -5?? +3)=0
i.e., ?? 2
+?? 2
+?? 2
+(3?? -12)?? +(4?? -3)?? +(4-5?? )?? +3?? +8=0
The centre of the sphere is (
3?? -12
2
),(
4?? -3
2
),(
4-5?? 2
) . This lies on the given plane if
-[4(
3?? -12
2
)-5(
4?? -3
2
)-(
4-5?? 2
)] =3
? 3?? +37=6
? ?? =
-31
3
? Required sphere is
?? 2
+?? 2
+?? 2
-43?? -
133
3
?? +
167
3
?? -23=0
4.2 Show that the plane ?? +?? -?? ?? =?? cuts the sphere ?? ?? +?? ?? +?? ?? -?? +?? =?? in a
circle of radius 1 and find the equation of the sphere which has this circle as great
circle.
(2010: 12 Marks)
Solution:
Given : Equation of circle is ?? 2
+?? 2
+?? 2
-?? +?? =2, Plane =?? +?? -2?? =3
Centre of given circle =(
1
2
,-
1
2
,0)
Radius =
v
1
4
,
1
4
,2=
v
2+
1
2
=
v
5
2
Let ?? be the centre of this circle.
Distance of plane from centre
|
1
2
-
1
2
-3|
v1
2
+1
2
+2
2
=
3
v6
? Radius of circle with ???? as radius
v
5
2
-
9
6
=
v
2
2
=1
Equation of sphere with circle as great circle.
?? 2
+?? 2
+?? 2
-?? +?? -2+?? (?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -2+???? +???? -2???? -?? 3=0
? ?? 2
+?? 2
+?? 2
+(1-?? )?? +(1+?? )?? -2???? -3?? +2=0
Page 3
Edurev123
4. Sphere and its Properties
4.1 Find the equation of the sphere having its Centre on the plane ?? ?? -?? ?? -?? =??
and passing through the ci zle
?? ?? +?? ?? +?? ?? -???? ?? -?? ?? +?? ?? +?? =?? ?? ?? +?? ?? -?? ?? +?? =??
(2009 : 12 Marks)
Solution:
Approach: General equation of sphere through any circle is used. The parameter san be
found by the Centre satisfying equation of plane.
General equation of a sphere passing through the circle is
?? +???? =0
or (?? 2
+?? 2
+?? 2
-12?? -3?? +4?? +8)+?? (3?? +4?? -5?? +3)=0
i.e., ?? 2
+?? 2
+?? 2
+(3?? -12)?? +(4?? -3)?? +(4-5?? )?? +3?? +8=0
The centre of the sphere is (
3?? -12
2
),(
4?? -3
2
),(
4-5?? 2
) . This lies on the given plane if
-[4(
3?? -12
2
)-5(
4?? -3
2
)-(
4-5?? 2
)] =3
? 3?? +37=6
? ?? =
-31
3
? Required sphere is
?? 2
+?? 2
+?? 2
-43?? -
133
3
?? +
167
3
?? -23=0
4.2 Show that the plane ?? +?? -?? ?? =?? cuts the sphere ?? ?? +?? ?? +?? ?? -?? +?? =?? in a
circle of radius 1 and find the equation of the sphere which has this circle as great
circle.
(2010: 12 Marks)
Solution:
Given : Equation of circle is ?? 2
+?? 2
+?? 2
-?? +?? =2, Plane =?? +?? -2?? =3
Centre of given circle =(
1
2
,-
1
2
,0)
Radius =
v
1
4
,
1
4
,2=
v
2+
1
2
=
v
5
2
Let ?? be the centre of this circle.
Distance of plane from centre
|
1
2
-
1
2
-3|
v1
2
+1
2
+2
2
=
3
v6
? Radius of circle with ???? as radius
v
5
2
-
9
6
=
v
2
2
=1
Equation of sphere with circle as great circle.
?? 2
+?? 2
+?? 2
-?? +?? -2+?? (?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -2+???? +???? -2???? -?? 3=0
? ?? 2
+?? 2
+?? 2
+(1-?? )?? +(1+?? )?? -2???? -3?? +2=0
Radius of the sphere =1
? (
1-?? 2
)
2
+(
1+?? 2
)
2
+?? 2
+3?? +2=1
2
?
1+?? 2
+2?? 4
+
1+?? 2
-2?? 4
+?? 2
+3?? +2=1
?
3?? 2
2
+
1
2
+3?? =-1
?
3?? 2
2
+3?? +
3
2
=0
? ?? 2
+2?? +1=0
? (?? +1)
2
=0
? ?? =-1
Using this value of ?? , the equation of sphere is
?? 2
+?? 2
+?? 2
-?? +?? -2-1(?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -?? -?? -?? +2?? +3=0
? ?? 2
+?? 2
+?? 2
-3?? +2?? +1=0
4.3 Show that the equation of the sphere which touches the sphere
?? (?? ?? +?? ?? +?? ?? )+???? ?? -???? ?? -?? ?? =??
at the point (?? ,?? ,-?? ) and passes through the point (-?? ,?? ,?? ) is
?? ?? +?? ?? +?? ?? +?? ?? -?? ?? +?? =??
(2011 : 10 Marks)
Solution:
The equation of the given sphere is
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? =0 (??)
The equation of the tangent plane to the sphere (i) at the point (1,2,-2) is
4(?? ·1+?? ·2+?? (-2))+5·(?? +1)-
25
2
(?? +2)-(?? -2)=0
Or 18?? -9?? -18?? +14=0 (???? )
? The equation of the sphere which touches the sphere (i) at (1,2,-2) is
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? +?? (18?? -9?? -18?? +14)=0 (?????? )
If (iii) passes through (-1,0,1) then,
4(1+0+0)+10(-1)-0-0+?? (-18-0-0+14)=0
Page 4
Edurev123
4. Sphere and its Properties
4.1 Find the equation of the sphere having its Centre on the plane ?? ?? -?? ?? -?? =??
and passing through the ci zle
?? ?? +?? ?? +?? ?? -???? ?? -?? ?? +?? ?? +?? =?? ?? ?? +?? ?? -?? ?? +?? =??
(2009 : 12 Marks)
Solution:
Approach: General equation of sphere through any circle is used. The parameter san be
found by the Centre satisfying equation of plane.
General equation of a sphere passing through the circle is
?? +???? =0
or (?? 2
+?? 2
+?? 2
-12?? -3?? +4?? +8)+?? (3?? +4?? -5?? +3)=0
i.e., ?? 2
+?? 2
+?? 2
+(3?? -12)?? +(4?? -3)?? +(4-5?? )?? +3?? +8=0
The centre of the sphere is (
3?? -12
2
),(
4?? -3
2
),(
4-5?? 2
) . This lies on the given plane if
-[4(
3?? -12
2
)-5(
4?? -3
2
)-(
4-5?? 2
)] =3
? 3?? +37=6
? ?? =
-31
3
? Required sphere is
?? 2
+?? 2
+?? 2
-43?? -
133
3
?? +
167
3
?? -23=0
4.2 Show that the plane ?? +?? -?? ?? =?? cuts the sphere ?? ?? +?? ?? +?? ?? -?? +?? =?? in a
circle of radius 1 and find the equation of the sphere which has this circle as great
circle.
(2010: 12 Marks)
Solution:
Given : Equation of circle is ?? 2
+?? 2
+?? 2
-?? +?? =2, Plane =?? +?? -2?? =3
Centre of given circle =(
1
2
,-
1
2
,0)
Radius =
v
1
4
,
1
4
,2=
v
2+
1
2
=
v
5
2
Let ?? be the centre of this circle.
Distance of plane from centre
|
1
2
-
1
2
-3|
v1
2
+1
2
+2
2
=
3
v6
? Radius of circle with ???? as radius
v
5
2
-
9
6
=
v
2
2
=1
Equation of sphere with circle as great circle.
?? 2
+?? 2
+?? 2
-?? +?? -2+?? (?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -2+???? +???? -2???? -?? 3=0
? ?? 2
+?? 2
+?? 2
+(1-?? )?? +(1+?? )?? -2???? -3?? +2=0
Radius of the sphere =1
? (
1-?? 2
)
2
+(
1+?? 2
)
2
+?? 2
+3?? +2=1
2
?
1+?? 2
+2?? 4
+
1+?? 2
-2?? 4
+?? 2
+3?? +2=1
?
3?? 2
2
+
1
2
+3?? =-1
?
3?? 2
2
+3?? +
3
2
=0
? ?? 2
+2?? +1=0
? (?? +1)
2
=0
? ?? =-1
Using this value of ?? , the equation of sphere is
?? 2
+?? 2
+?? 2
-?? +?? -2-1(?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -?? -?? -?? +2?? +3=0
? ?? 2
+?? 2
+?? 2
-3?? +2?? +1=0
4.3 Show that the equation of the sphere which touches the sphere
?? (?? ?? +?? ?? +?? ?? )+???? ?? -???? ?? -?? ?? =??
at the point (?? ,?? ,-?? ) and passes through the point (-?? ,?? ,?? ) is
?? ?? +?? ?? +?? ?? +?? ?? -?? ?? +?? =??
(2011 : 10 Marks)
Solution:
The equation of the given sphere is
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? =0 (??)
The equation of the tangent plane to the sphere (i) at the point (1,2,-2) is
4(?? ·1+?? ·2+?? (-2))+5·(?? +1)-
25
2
(?? +2)-(?? -2)=0
Or 18?? -9?? -18?? +14=0 (???? )
? The equation of the sphere which touches the sphere (i) at (1,2,-2) is
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? +?? (18?? -9?? -18?? +14)=0 (?????? )
If (iii) passes through (-1,0,1) then,
4(1+0+0)+10(-1)-0-0+?? (-18-0-0+14)=0
4-10+?? (-4) =0
-6 =4?? ??? =-
3
2
Put ?? =-
3
2
in (iii),
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? -
3
2
(18?? -9?? -18?? +14)=0
? 8(?? 2
+?? 2
+?? 2
)+20?? -50?? -4?? -54?? +27?? +54?? -42=0
?8(?? 2
+?? 2
+?? 2
)-34?? -23?? +50?? -42=0, which is the required equation of the
sphere.
4.4 Show that three mutually perpendicular tangent lines can be drawn to the
sphere ?? ?? +?? ?? +?? ?? =?? ?? from any point on the sphere ?? (?? ?? +?? ?? +?? ?? )=?? ?? ?? .
(2013 : 15 Marks)
Solution:
Let (?? ,?? ,?? ) be any point. Equation of enveloping cone from this point to sphere
?? 2
+?? 2
+?? 2
=1
2
(??)
is ?? ?? 1
=?? 1
2
?(?? 2
+?? 2
+?? 2
-?? 2
)(?? 2
+?? 2
+?? 2
-?? 2
)=(???? +???? +???? -?? 2
)
2
This cone will have three mutually perpendicular generators if coefficient of ?? 2
+
coefficient of ?? 2
+ coefficient of ?? 2
=0.
i.e., ?? +?? +?? =0
? (?? 2
+?? 2
-?? 2
)+(?? 2
+?? 2
-?? 2
)+(?? 2
+?? 2
-?? 2
)=0
? 2(?? 2
+?? 2
+?? 2
)=0
Since this is also the condition that three tangent lines from (?? ,?? ,?? ) to sphere are
mutually perpendicular, so locus of (?? ,?? ,?? ) is
2(?? 2
+?? 2
+?? 2
)=3?? 2
4.5 Find the co-ordinates of the points on the sphere ?? ?? +?? ?? +?? ?? -?? ?? +?? ?? =?? ,
the tangent planes at which are paraliel to the plane ?? ?? -?? +?? ?? =?? .
(2014 : 10 Marks)
Solution:
Let, the equation of planes ?? 1
and ?? 2
parallel to
Page 5
Edurev123
4. Sphere and its Properties
4.1 Find the equation of the sphere having its Centre on the plane ?? ?? -?? ?? -?? =??
and passing through the ci zle
?? ?? +?? ?? +?? ?? -???? ?? -?? ?? +?? ?? +?? =?? ?? ?? +?? ?? -?? ?? +?? =??
(2009 : 12 Marks)
Solution:
Approach: General equation of sphere through any circle is used. The parameter san be
found by the Centre satisfying equation of plane.
General equation of a sphere passing through the circle is
?? +???? =0
or (?? 2
+?? 2
+?? 2
-12?? -3?? +4?? +8)+?? (3?? +4?? -5?? +3)=0
i.e., ?? 2
+?? 2
+?? 2
+(3?? -12)?? +(4?? -3)?? +(4-5?? )?? +3?? +8=0
The centre of the sphere is (
3?? -12
2
),(
4?? -3
2
),(
4-5?? 2
) . This lies on the given plane if
-[4(
3?? -12
2
)-5(
4?? -3
2
)-(
4-5?? 2
)] =3
? 3?? +37=6
? ?? =
-31
3
? Required sphere is
?? 2
+?? 2
+?? 2
-43?? -
133
3
?? +
167
3
?? -23=0
4.2 Show that the plane ?? +?? -?? ?? =?? cuts the sphere ?? ?? +?? ?? +?? ?? -?? +?? =?? in a
circle of radius 1 and find the equation of the sphere which has this circle as great
circle.
(2010: 12 Marks)
Solution:
Given : Equation of circle is ?? 2
+?? 2
+?? 2
-?? +?? =2, Plane =?? +?? -2?? =3
Centre of given circle =(
1
2
,-
1
2
,0)
Radius =
v
1
4
,
1
4
,2=
v
2+
1
2
=
v
5
2
Let ?? be the centre of this circle.
Distance of plane from centre
|
1
2
-
1
2
-3|
v1
2
+1
2
+2
2
=
3
v6
? Radius of circle with ???? as radius
v
5
2
-
9
6
=
v
2
2
=1
Equation of sphere with circle as great circle.
?? 2
+?? 2
+?? 2
-?? +?? -2+?? (?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -2+???? +???? -2???? -?? 3=0
? ?? 2
+?? 2
+?? 2
+(1-?? )?? +(1+?? )?? -2???? -3?? +2=0
Radius of the sphere =1
? (
1-?? 2
)
2
+(
1+?? 2
)
2
+?? 2
+3?? +2=1
2
?
1+?? 2
+2?? 4
+
1+?? 2
-2?? 4
+?? 2
+3?? +2=1
?
3?? 2
2
+
1
2
+3?? =-1
?
3?? 2
2
+3?? +
3
2
=0
? ?? 2
+2?? +1=0
? (?? +1)
2
=0
? ?? =-1
Using this value of ?? , the equation of sphere is
?? 2
+?? 2
+?? 2
-?? +?? -2-1(?? +?? -2?? -3)=0
? ?? 2
+?? 2
+?? 2
-?? +?? -?? -?? -?? +2?? +3=0
? ?? 2
+?? 2
+?? 2
-3?? +2?? +1=0
4.3 Show that the equation of the sphere which touches the sphere
?? (?? ?? +?? ?? +?? ?? )+???? ?? -???? ?? -?? ?? =??
at the point (?? ,?? ,-?? ) and passes through the point (-?? ,?? ,?? ) is
?? ?? +?? ?? +?? ?? +?? ?? -?? ?? +?? =??
(2011 : 10 Marks)
Solution:
The equation of the given sphere is
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? =0 (??)
The equation of the tangent plane to the sphere (i) at the point (1,2,-2) is
4(?? ·1+?? ·2+?? (-2))+5·(?? +1)-
25
2
(?? +2)-(?? -2)=0
Or 18?? -9?? -18?? +14=0 (???? )
? The equation of the sphere which touches the sphere (i) at (1,2,-2) is
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? +?? (18?? -9?? -18?? +14)=0 (?????? )
If (iii) passes through (-1,0,1) then,
4(1+0+0)+10(-1)-0-0+?? (-18-0-0+14)=0
4-10+?? (-4) =0
-6 =4?? ??? =-
3
2
Put ?? =-
3
2
in (iii),
4(?? 2
+?? 2
+?? 2
)+10?? -25?? -2?? -
3
2
(18?? -9?? -18?? +14)=0
? 8(?? 2
+?? 2
+?? 2
)+20?? -50?? -4?? -54?? +27?? +54?? -42=0
?8(?? 2
+?? 2
+?? 2
)-34?? -23?? +50?? -42=0, which is the required equation of the
sphere.
4.4 Show that three mutually perpendicular tangent lines can be drawn to the
sphere ?? ?? +?? ?? +?? ?? =?? ?? from any point on the sphere ?? (?? ?? +?? ?? +?? ?? )=?? ?? ?? .
(2013 : 15 Marks)
Solution:
Let (?? ,?? ,?? ) be any point. Equation of enveloping cone from this point to sphere
?? 2
+?? 2
+?? 2
=1
2
(??)
is ?? ?? 1
=?? 1
2
?(?? 2
+?? 2
+?? 2
-?? 2
)(?? 2
+?? 2
+?? 2
-?? 2
)=(???? +???? +???? -?? 2
)
2
This cone will have three mutually perpendicular generators if coefficient of ?? 2
+
coefficient of ?? 2
+ coefficient of ?? 2
=0.
i.e., ?? +?? +?? =0
? (?? 2
+?? 2
-?? 2
)+(?? 2
+?? 2
-?? 2
)+(?? 2
+?? 2
-?? 2
)=0
? 2(?? 2
+?? 2
+?? 2
)=0
Since this is also the condition that three tangent lines from (?? ,?? ,?? ) to sphere are
mutually perpendicular, so locus of (?? ,?? ,?? ) is
2(?? 2
+?? 2
+?? 2
)=3?? 2
4.5 Find the co-ordinates of the points on the sphere ?? ?? +?? ?? +?? ?? -?? ?? +?? ?? =?? ,
the tangent planes at which are paraliel to the plane ?? ?? -?? +?? ?? =?? .
(2014 : 10 Marks)
Solution:
Let, the equation of planes ?? 1
and ?? 2
parallel to
2?? -?? +2?? =1
2?? -?? +2?? +?? =0
2?? -?? +2?? +?? =0
Now, of
be tangent to sphere length perpendicular to ?? 1
and ?? 2
= radius of sphere.
|
2(2)-1(-1)+2(0)+?? v4+1+4
|=3
So,
?? =14,-4
Now, to find points of constant of tangent plane, ?? 1
,?? 2
and sphere (point ?? and ?? in
diagram) equation of line ' ?? 1
' normal to tangent plane and passing through centre
(2,-1,0) is
?? -2
2
=
?? +1
-1
=
?? -0
2
=??
For ?? and ?? ??? =±??
???? ,
?? -2
2/3
=
?? +1
-1/3
=
?? 2/3
=±3
or (?? ,?? ,?? )˜(4,-2,2),(0,0,-2)
Read More